Merlino, Kathryn Rogers. (2014). [Re]Evaluating Significance: The Environmental and Cultural Value in Older and Historic Buildings. Public Historian, 36(3), 70 – 85.
View Publication
Abstract
Traditionally the value of a building is measured through the historical, cultural, or architectural significance that has emerged from the established traditions of historic preservation policy in the United States. Although the designation of historic properties is a critical venue to save our most historically significant buildings, it does not account for those that fall outside of the established categories of significance. Accounting for the environmental value of buildings and understanding them as repositories of energy and materials repositions the way we value of the built environment for a more sustainable future.
Keywords
Adaptive Reuse; Historic Preservation; Sustainability; Cultural Preservation; Building Reuse
Frank, A.; Carroll-Nellenback, Jonathan; Alberti, M.; Kleidon, A. (2018). The Anthropocene Generalized: Evolution of Exo-Civilizations and Their Planetary Feedback. Astrobiology, 18(5), 503 – 518.
View Publication
Abstract
We present a framework for studying generic behaviors possible in the interaction between a resource-harvesting technological civilization (an exo-civilization) and the planetary environment in which it evolves. Using methods from dynamical systems theory, we introduce and analyze a suite of simple equations modeling a population which consumes resources for the purpose of running a technological civilization and the feedback those resources drive on the state of the host planet. The feedbacks can drive the planet away from the initial state the civilization originated in and into domains that are detrimental to its sustainability. Our models conceptualize the problem primarily in terms of feedbacks from the resource use onto the coupled planetary systems. In addition, we also model the population growth advantages gained via the harvesting of these resources. We present three models of increasing complexity: (1) Civilization-planetary interaction with a single resource; (2) Civilization-planetary interaction with two resources each of which has a different level of planetary system feedback; (3) Civilization-planetary interaction with two resources and nonlinear planetary feedback (i.e., runaways). All three models show distinct classes of exo-civilization trajectories. We find smooth entries into long-term, sustainable steady states. We also find population booms followed by various levels of die-off. Finally, we also observe rapid collapse trajectories for which the population approaches n=0. Our results are part of a program for developing an Astrobiology of the Anthropocene in which questions of sustainability, centered on the coupled Earth-system, can be seen in their proper astronomical/planetary context. We conclude by discussing the implications of our results for both the coupled Earth system and for the consideration of exo-civilizations across cosmic history.
Keywords
Anthropocene Epoch; Holocene Epoch; Climatology; Earth System Science; Climate Change; Earth (planet); Biosphere; Easter-island; Earth; Population; Anthropocene; Astrobiology; Civilization; Dynamical System Theory; Exoplanets; Population Dynamics
Tobey, Michael B.; Binder, Robert B.; Chang, Soowon; Yoshida, Takahiro; Yamagata, Yoshiki; Yang, Perry P. J. (2019). Urban Systems Design: A Conceptual Framework for Planning Smart Communities. Smart Cities, 2(4), 522 – 537.
View Publication
Abstract
Urban systems design arises from disparate current planning approaches (urban design, Planning Support Systems, and community engagement), compounded by the reemergence of rational planning methods from new technology (Internet of Things (IoT), metric based analysis, and big data). The proposed methods join social considerations (Human Well-Being), environmental needs (Sustainability), climate change and disaster mitigation (Resilience), and prosperity (Economics) as the four foundational pillars. Urban systems design integrates planning methodologies to systematically tackle urban challenges, using IoT and rational methods, while human beings form the core of all analysis and objectives. Our approach utilizes an iterative three-phase development loop to contextualize, evaluate, plan and design scenarios for the specific needs of communities. An equal emphasis is placed on feedback loops through analysis and design, to achieve the end goal of building smart communities.
Keywords
Urban Design; Planning Support System; Resilience; Sustainability; Economics; Human Factors; Big Data
Lin, Brenda B.; Ossola, Alessandro; Alberti, Marina; Andersson, Erik; Bai, Xuemei; Dobbs, Cynnamon; Elmqvist, Thomas; Evans, Karl L.; Frantzeskaki, Niki; Fuller, Richard A.; Gaston, Kevin J.; Haase, Dagmar; Jim, Chi Yung; Konijnendijk, Cecil; Nagendra, Harini; Niemela, Jari; Mcphearson, Timon; Moomaw, William R.; Parnell, Susan; Pataki, Diane; Ripple, William J.; Tan, Puay Yok. (2021). Integrating Solutions to Adapt Cities for Climate Change. Lancet Planetary Health, 5(7), E479 – E486.
View Publication
Abstract
Record climate extremes are reducing urban liveability, compounding inequality, and threatening infrastructure. Adaptation measures that integrate technological, nature-based, and social solutions can provide multiple co-benefits to address complex socioecological issues in cities while increasing resilience to potential impacts. However, there remain many challenges to developing and implementing integrated solutions. In this Viewpoint, we consider the value of integrating across the three solution sets, the challenges and potential enablers for integrating solution sets, and present examples of challenges and adopted solutions in three cities with different urban contexts and climates (Freiburg, Germany; Durban, South Africa; and Singapore). We conclude with a discussion of research directions and provide a road map to identify the actions that enable successful implementation of integrated climate solutions. We highlight the need for more systematic research that targets enabling environments for integration; achieving integrated solutions in different contexts to avoid maladaptation; simultaneously improving liveability, sustainability, and equality; and replicating via transfer and scale-up of local solutions. Cities in systematically disadvantaged countries (sometimes referred to as the Global South) are central to future urban development and must be prioritised. Helping decision makers and communities understand the potential opportunities associated with integrated solutions for climate change will encourage urgent and deliberate strides towards adapting cities to the dynamic climate reality.
Keywords
Urban; Resilience; Energy; Water; Transformations; Sustainability; Opportunities; Challenges; Mitigation; Knowledge
Yocom, Ken. (2014). Building Watershed Narratives: An Approach for Broadening the Scope of Success in Urban Stream Restoration. Landscape Research, 39(6), 698 – 714.
View Publication
Abstract
The success of urban stream restoration is often measured through biophysical attributes, or the progress towards restoration of a notionally intact section of landscape. What remains understudied is how success can be defined across social, economic, as well as ecological parameters. This research offers a narrative approach for urban restoration research that serves as a chronotope for untangling the biophysical and sociocultural complexities of the contemporary urban environment. The framework of this approach is presented through a case study of a recent stream restoration project in Seattle, Washington. The findings highlight the need for urban stream restoration processes to be grounded within a sociocultural context that is interdependent with biophysical conditions, and recommends measures of project success to include community, educational and participatory goals.
Keywords
River Restoration; Landscape; Management; Catchment; Systems; History; People; Restoration; Success; Watershed; Narrative; Urban
Korn, Abigail; Bolton, Susan M.; Spencer, Benjamin; Alarcon, Jorge A.; Andrews, Leann; Voss, Joachim G. (2018). Physical and Mental Health Impacts of Household Gardens in an Urban Slum in Lima, Peru. International Journal Of Environmental Research And Public Health, 15(8).
View Publication
Abstract
Rural poverty and lack of access to education has led to urban migration and fed the constant growth of urban slums in Lima, Peru. Inhabitants of these informal settlements lack land rights and access to a public water supply, resulting in poor sanitation, an inability to grow food, and suboptimal health outcomes. A repeated measures longitudinal pilot study utilizing participatory design methods was conducted in Lima between September 2013 and September 2014 to determine the feasibility of implementing household gardens and the subsequent impact of increased green space on well-being. Anthropometric data and a composite of five validated mental health surveys were collected at the baseline, 6-months, and 12-months after garden construction. Significant increases from the baseline in all domains of quality of life, including: physical (p < 0.01), psychological (p = 0.05), social (p = 0.02), environmental (p = 0.02), and overall social capital (p < 0.01) were identified 12 months after garden construction. Life-threatening experiences decreased significantly compared to the baseline (p = 0.02). There were no significant changes in parent or partner empathy (p = 0.21), BMI (p = 0.95), waist circumference (p = 0.18), or blood pressure (p = 0.66) at 6 or 12 months. Improved access to green space in the form of a household garden can significantly improve mental health in an urban slum setting.
Keywords
Of-life Assessment; Psychometric Properties; Threatening Experiences; Vegetable Consumption; Developing-countries; Community Garden; Climate-change; Green Space; Poverty; Participation; Mental Health; Peru; Quality Of Life; Urban Slum; Social Capital
Tobey, Michael B.; Binder, Robert B.; Yoshida, Takahiro; Yamagata, Yoshiki. (2019). Urban Systems Design Case Study: Tokyo’s Sumida Ward. Smart Cities, 2(4), 453 – 470.
View Publication
Abstract
Meeting the needs of increasing environmental and systematic pressures in urban settlements requires the use of integrated and wholistic approaches. The Urban Systems Design (USD) Conceptual Framework joins the metric-based modeling of rationalized methods with human-driven goals to form a combined iterative design and analysis loop. The framework processes information for the fundamental element of cities-humans-to large-scale modeling and decision-making occurring in district- and ward-level planning. There is a need in the planning and design profession to better integrate these efforts at a greater scale to create smart communities that are inclusive and comprehensive in aspects from data management to energy and transportation networks. The purpose of this study is to examine the applicability of this method as it pertains to a model and design integrated approach. Northern Sumida Ward, located in Tokyo, exemplifies the contextualized needs of Tokyo, and Japan, while forming a coherent internal community. Focusing on methodology, our process explores the creation of typologies, metric-based analysis, and design-based approaches that are integrated into modeling. The results of the analyses provide initial evidence regarding the validity of the USD approach in modeling changes to complex systems at differing design scales, connecting various qualities of the built environment, building and urban forms, and diagnostic comparisons between baseline and change conditions. Because of some inconsistencies and the need for further evidence gathering, the methods and processes show that there is much work to be done to strengthen the model and to continue building a more productive field of USD. However, in this framework's continuing evolution, there is increasing evidence that combining the planning and design of urban systems creates a more resilient, economically viable, sustainable, and comfortable city.
Keywords
Urban Planning; Resilience; Sustainability; Economics; Human Factors; Tokyo; Planning Support System; Gis
Pataki, Diane E.; Alberti, Marina; Cadenasso, Mary L.; Felson, Alexander J.; McDonnell, Mark J.; Pincetl, Stephanie; Pouyat, Richard V.; Setala, Heikki; Whitlow, Thomas H. (2021). The Benefits and Limits of Urban Tree Planting for Environmental and Human Health. Frontiers In Ecology And Evolution, 9.
View Publication
Abstract
Many of the world's major cities have implemented tree planting programs based on assumed environmental and social benefits of urban forests. Recent studies have increasingly tested these assumptions and provide empirical evidence for the contributions of tree planting programs, as well as their feasibility and limits, for solving or mitigating urban environmental and social issues. We propose that current evidence supports local cooling, stormwater absorption, and health benefits of urban trees for local residents. However, the potential for urban trees to appreciably mitigate greenhouse gas emissions and air pollution over a wide array of sites and environmental conditions is limited. Consequently, urban trees appear to be more promising for climate and pollution adaptation strategies than mitigation strategies. In large part, this is due to space constraints limiting the extent of urban tree canopies relative to the current magnitude of emissions. The most promising environmental and health impacts of urban trees are those that can be realized with well-stewarded tree planting and localized design interventions at site to municipal scales. Tree planting at these scales has documented benefits on local climate and health, which can be maximized through targeted site design followed by monitoring, adaptive management, and studies of long-term eco-evolutionary dynamics.
Keywords
Outdoor Thermal Comfort; Improved Public-health; Carbon Storage; Ecosystem Services; Air-quality; Rainfall Interception; Vegetation; Cover; Design; Impact; Urban Ecology; Forestry; Sustainability; Policy; Climate Mitigation; Climate Adaptation; Ecosystem Disservices
The EarthLab Innovations Grant Program was launched in 2019 to fund actionable environmental research. The 2022-23 EarthLab Innovation Grants program received 33 high-quality proposals for research at the intersection of climate change and social justice. One awarded project titled, “Centering Place and Community to Address Climate Change and Social Justice” was led by P.I. Daniel Abramson, Associate Professor of Urban Design & Planning and Adjunct Associate Professor of Architecture & Landscape Architecture, and Community Lead, Jamie Judkins, of the Shoalwater…
Assistant Professor of Landscape Architecture Catherine De Almeida remembers picking up trash on the playground, seeing people throw trash out their car window, and noticing trash flying around while she played outside as a child. The presence of litter in landscapes upset her so much that she would spend her elementary school recesses picking up trash. When she got into the field of architecture, De Almeida found herself drawn to how things could be flexible and take on multiple identities…