Rodriguez, Barbara X.; Simonen, Kathrina; Huang, Monica; De Wolf, Catherine. (2019). A Taxonomy for Whole Building Life Cycle Assessment (WBLCA). Smart And Sustainable Built Environment, 8(3), 190 – 205.
View Publication
Abstract
Purpose The purpose of this paper is to present an analysis of common parameters in existing tools that provide guidance to carry out Whole Building Life Cycle Assessment (WBLCA) and proposes a new taxonomy, a catalogue of parameters, for the definition of the goal and scope (G&S) in WBLCA. Design/methodology/approach A content analysis approach is used to identify, code and analyze parameters in existing WBLCA tools. Finally, a catalogue of parameters is organized into a new taxonomy. Findings In total, 650 distinct parameter names related to the definition of G&S from 16 WBLCAs tools available in North America, Europe and Australia are identified. Building on the analysis of existing taxonomies, a new taxonomy of 54 parameters is proposed in order to describe the G&S of WBLCA. Research limitations/implications The analysis of parameters in WBLCA tools does not include Green Building Rating Systems and is only limited to tools available in English. Practical implications This research is crucial in life cycle assessment (LCA) method harmonization and to serve as a stepping stone to the identification and categorization of parameters that could contribute to WBLCA comparison necessary to meet current global carbon goals. Social implications The proposed taxonomy enables architecture, engineering and construction practitioners to contribute to current WBLCA practice. Originality/value A study of common parameters in existing tools contributes to identifying the type of data that is required to describe buildings and contribute to build a standardized framework for LCA reporting, which would facilitate consistency across future studies and can serve as a checklist for practitioners when conducting the G&S stage of WBLCA.
Keywords
Content Analysis; Taxonomy; Lca; Lca Tools; Tools For Practitioners; Whole Building Life Cycle Assessment
Zou, Tianqi; Khaloei, Moein; Mackenzie, Don. (2020). Effects of Charging Infrastructure Characteristics on Electric Vehicle Preferences of New and Used Car Buyers in the United States. Transportation Research Record, 2674(12), 165 – 175.
View Publication
Abstract
The used car market is a critical element for the mass adoption of electric vehicles (EVs). However, most previous studies on EV adoption have focused only on new car markets. This article examines and compares the effects of charging infrastructure characteristics on the preferences for EVs among both new and used car buyers. This study is based on an online stated preference choice experiment among private car owners in the U.S., and the results of comparable binomial logistic models show that new and used car buyers generally share similar patterns in preferences for EVs, with exceptions for sensitivity toward fast charging time, and home charging solutions. Respondents' stated willingness to adopt an EV increases considerably with improvements in driving range, and the effects on new and used car buyers are similar. The study also finds that better availability of charging infrastructure largely increases preference for EVs. The results further reveal that slow and fast charging have complementary effects on encouraging EV adoption as the combination of public slow and fast charging can compensate for the unavailability of home charging.
Berke, Ethan M.; Vernez-Moudon, Anne. (2014). Built Environment Change: A Framework to Support Health-Enhancing Behaviour through Environmental Policy and Health Research. Journal Of Epidemiology And Community Health, 68(6), 586 – 590.
View Publication
Abstract
As research examining the effect of the built environment on health accelerates, it is critical for health and planning researchers to conduct studies and make recommendations in the context of a robust theoretical framework. We propose a framework for built environment change (BEC) related to improving health. BEC consists of elements of the built environment, how people are exposed to and interact with them perceptually and functionally, and how this exposure may affect health-related behaviours. Integrated into this framework are the legal and regulatory mechanisms and instruments that are commonly used to effect change in the built environment. This framework would be applicable to medical research as well as to issues of policy and community planning.
Keywords
Geographic Information-systems; Physical-activity; Obesity; Place; Associations; Walkability; Risk; Care
Yi, June-seong; Kim, Yong-woo; Lim, Ji Youn; Lee, Jeehee. (2017). Activity-Based Life Cycle Analysis of a Curtain Wall Supply for Reducing Its Environmental Impact. Energy And Buildings, 138, 69 – 79.
View Publication
Abstract
Life-Cycle Assessment has been used extensively in the construction industry to assess the environmental impacts of building materials. Attributional LCA considers processes in a supply chain which allows users to identify a process to improve to minimize the environmental impacts. However, the level of detail adopted in traditional attributional LCA is aggregate, not appropriate for process improvement efforts in the construction project context which is characterized as a complex system. This paper proposes Activity-based LCA (ABLCA) which adopts the methodology of the activity-based costing system to carry out the assessment and analysis of environmental impacts for the life cycle. The research carried out a case study on the curtain wall supply chain. The outcome of inventory analysis for each activity and environmental impact assessment showed the curtain wall supply chain process made an impact on five environmental impact categories: global warming air, acidification air, HH criteria air; eutrophication air, and photochemical smog air. With comparison to the outcome of environmental impact assessment from existing LCA, the proposed management system to investigate environmental impacts was addressed. The proposed ABLCA enables management to develop an environmental-impacts-reduction plan focusing on critical activities. (C) 2016 Elsevier B.V. All rights reserved.
Keywords
Construction Industry & The Environment; Energy Conservation In Construction Industry; Building Materials & The Environment; Complexity (philosophy); Global Warming & The Environment; Activity-based Management; Attributional Lca (life-cycle Assessment); Curtain Wall; Environmental Impacts; Activity-based Life Cycle Analysis; Ablca; Construction Industry; Building Materials; Inventory Analysis; Life-cycle Assessment; Environmental Impact Categories; Curtain Wall Supply Chain Process; Environmental Impact Assessment; Environmental-impacts-reduction Plan; Environmental Factors; Inventory Management; Life Cycle Costing; Product Life Cycle Management; Supply Chain Management; Walls; United-states; Performance; Buildings; Energy; Trends; Lca; Environmental Impact; Supply Chains; Environmental Assessment; Construction Materials; Life Cycle Engineering; Eutrophication; Life Cycle Analysis; Construction; Climate Change; Global Warming; Smog; Life Cycle Assessment; Case Studies; Cost Analysis; Acidification; Photochemical Smog; Environmental Management; Life Cycles
Sheth, Manali; Butrina, Polina; Goodchild, Anne; McCormack, Edward. (2019). Measuring Delivery Route Cost Trade-Offs between Electric-Assist Cargo Bicycles and Delivery Trucks in Dense Urban Areas. European Transport Research Review, 11(1).
View Publication
Abstract
Introduction: Completing urban freight deliveries is increasingly a challenge in congested urban areas, particularly when delivery trucks are required to meet time windows. Depending on the route characteristics, Electric Assist (EA) cargo bicycles may serve as an economically viable alternative to delivery trucks. The purpose of this paper is to compare the delivery route cost trade-offs between box delivery trucks and EA cargo bicycles that have the same route and delivery characteristics, and to explore the question, under what conditions do EA cargo bikes perform at a lower cost than typical delivery trucks? Methods: The independent variables, constant variables, and assumptions used for the cost function comparison model were gathered through data collection and a literature review. A delivery route in Seattle was observed and used as the base case; the same route was then modelled using EA cargo bicycles. Four separate delivery scenarios were modeled to evaluate how the following independent route characteristics would impact delivery route cost - distance between a distribution center (DC) and a neighborhood, number of stops, distance between each stop, and number of parcels per stop. Results: The analysis shows that three of the four modeled route characteristics affect the cost trade-offs between delivery trucks and EA cargo bikes. EA cargo bikes are more cost effective than delivery trucks for deliveries in close proximity to the DC (less than 2 miles for the observed delivery route with 50 parcels per stop and less than 6 miles for the hypothetical delivery route with 10 parcels per stop) and at which there is a high density of residential units and low delivery volumes per stop. Conclusion: Delivery trucks are more cost effective for greater distances from the DC and for large volume deliveries to one stop.
Keywords
Transportation; Sustainable Transportation; Parcel Post; Tricycles; Warehouses; Metropolitan Areas; Cargo Bicycles; Cargo Bike; Delivery Modes; E-trike; Electric Assist Cargo Bicycle; Electric Tricycle; Green Transportation; Parcel Deliveries; Urban Deliveries; Urban Logistics
Jung, Meen Chel; Dyson, Karen; Alberti, Marina. (2021). Urban Landscape Heterogeneity Influences the Relationship Between Tree Canopy and Land Surface Temperature. Urban Forestry & Urban Greening, 57.
View Publication
Abstract
Urban trees play a key role in alleviating elevated summertime land surface temperatures in cities. However, urban landscape influences the capacity of urban trees to mitigate higher temperatures. We propose that both developed land characteristics and tree cover should be considered to accurately estimate the mitigation effects of canopy cover. We subclassified original land cover based on the canopy cover ratio to capture the within-land cover heterogeneity. We selected two coastal cities with different summertime climatic conditions: Seattle, Washington, USA, and Baltimore, Maryland, USA. We used Landsat-based grid cells (30 m x 30 m) as our spatial analytical unit, with corresponding land surface temperature, canopy area, canopy compactness, population size, and National Land Cover Database (NLCD)-based land cover group. We first used grouped boxplots, Kruskal-Wallis H tests, and post-hoc multiple comparison tests to detect the distribution of land surface temperatures by the land cover group. We then introduced statistical models to test the group effects on the relationship between land surface temperatures and canopy cover variables. We found: (1) land surface temperature increases with level of development, (2) land surface temperature decreases with canopy cover level, (3) the magnitude of the mitigation effects from canopy area differs based on development level and current canopy cover, (4) the differing efficacies of canopy area in decreasing land surface temperature follows a nonlinear threshold relationship, and (5) compactness of canopy cover was not significant in reducing the land surface temperature. These findings suggest the importance of considering heterogeneous canopy cover within developed land cover classes in urban heat island research. Tree planting strategies need to consider the nonlinear relationships between tree canopy cover and land surface temperature alongside environmental equity concerns.
Keywords
Extreme Heat Events; Climate-change; Cover Data; Island; Pattern; Cities; Vegetation; Mortality; Phoenix; Impact; Canopy Cover; Environmental Equity; Land Cover; Land Surface Temperature; Mitigation Effect; Area; Canopy; Cells; Climatic Factors; Databases; Heat Island; Landscapes; Multiple Comparison Test; Planting; Population Size; Research; Statistical Models; Summer; Surface Temperature; Testing; Trees; Urban Forestry; Maryland
The EarthLab Innovations Grant Program was launched in 2019 to fund actionable environmental research. The 2022-23 EarthLab Innovation Grants program received 33 high-quality proposals for research at the intersection of climate change and social justice. One awarded project titled, “Centering Place and Community to Address Climate Change and Social Justice” was led by P.I. Daniel Abramson, Associate Professor of Urban Design & Planning and Adjunct Associate Professor of Architecture & Landscape Architecture, and Community Lead, Jamie Judkins, of the Shoalwater…
Assistant Professor, Department of Construction Management
Fred is an Assistant Professor with the Department of Construction Management (CM) at the University of Washington (UW). Prior to joining UW in September 2021, he was an Assistant Professor at Texas State University in San Marcos, TX where he taught and performed research in the areas of concrete materials, durability, and sustainable infrastructure construction. He received his PhD in Civil Engineering from the University of Texas at Austin in 2016.
Dr. Aguayo is interested in research application that contribute to facilitating the implementation of sustainable and novel cement-based systems in infrastructure and building applications such as alternative cement binders, supplementary cementing materials (SCMs), recycled aggregates, and high performing concretes. His research group focuses on evaluating and characterizing deterioration processes in new and existing cementitious materials, while also developing test methods to predict and enhance their performance and durability in the field. He primarily examines durability-related issues in cement-based materials such as corrosion, carbonation, ASR, sulfate attack, and early-age volume changes.
Dr. Aguayo is a well-established researcher with over 13 years of experience and over $1.2M in funded research projects as either PI or Co-PI since 2016. His work has been supported by both private industry and public agencies including LarfargeHolcim, Texas DOT, Minnesota DOT, New Mexico DOT, National Research Road Alliance (NRRA), and the Portland Cement Association (PCA). He is an active member of the American Concrete Institute and ASTM International, and participates in several committees related to concrete durability (ACI 201) and material science of cementitious systems (ACI 236).
Assistant Professor of Landscape Architecture Catherine De Almeida remembers picking up trash on the playground, seeing people throw trash out their car window, and noticing trash flying around while she played outside as a child. The presence of litter in landscapes upset her so much that she would spend her elementary school recesses picking up trash. When she got into the field of architecture, De Almeida found herself drawn to how things could be flexible and take on multiple identities…
I am interested in environmental democracy and the material and social dynamics that interact to affect community well-being and ecological health. While completing my Master of Public Health degree at UW, I led projects for the Health Impact Assessment of the Cleanup Plan for the Duwamish Superfund Site in Seattle, and then evaluated the outcomes of that HIA. Research for my PhD in the Built Environment will build on that work, further considering the determinants and production of adaptive capacity, resilience, sustainability, and vitality.