Skip to content

Vincent Javet

Vincent is a Swiss-Canadian designer, researcher, and educator trained as a landscape architect (MLA, University of Toronto) and urban planner (BURPl, Toronto Metropolitan University). He serves as Assistant Teaching Professor in Landscape Architecture at the University of Washington, where he focuses on fieldwork, experimentation, and cross-disciplinary study to understand the ecology, craft, and traditions of places at all scales and sites, on the spectrum from rural to urban, regional to material, and non-human to human.

Vincent maintains a practice with Unknown Studio Landscape Architecture and Urban Design (Baltimore) and has previously worked in Canada, Europe, and the United States with offices including West 8 Urban Design and Landscape Architecture (Rotterdam/New York City) and North Design Office (Toronto). In addition to his international design experience, Vincent has held research positions with Platform for Resilient Urbanism, the Green Roof Information Testing Laboratory (GRIT Lab) at the University of Toronto, and Green Roofs for Healthy Cities.

Among other accomplishments, Vincent has been a Landscape Architecture Foundation CSI Faculty Research Fellow and was an exhibiting artist at the 2021 Seoul Biennale of Architecture and Urbanism for his collaborative project “Beneath the City, Rivers”. His work has been published in Ground Magazine, Landscape Architecture Magazine, Living Architecture Monitor, Symposium on Simulation for Architecture and Urban Design (SimAUD), Architecture, Media, Politics, Society (AMPS), Journal of Digital Landscape Architecture (JoDLA) and the Harvard Graduate School of Design’s studio publication, Frontier City: Strategies for Boston Harbor.

Amos Darko

Dr. Darko brings with him a wealth of expertise and experience in sustainability, sustainable built environment, sustainable construction, green building, modular construction, project management, and digital technologies including building information modeling and artificial intelligence.

Dr. Darko earned his Ph.D. degree from The Hong Kong Polytechnic University (PolyU) in 2019, and his BSc degree (First Class Honors) from Kwame Nkrumah University of Science and Technology (KNUST) in 2014. Before joining the University of Washington, Dr. Darko was a Research Assistant Professor at PolyU.

Dr. Darko has published numerous papers in leading international peer-reviewed journals, conferences, and books. His papers have been rated as highly cited and hot papers by the Web of Science. His paper is the most cited paper of all time in the International Journal of Construction Management. He has also been ranked among the world’s top 2% most cited scientists by Elsevier BV and Stanford University. Dr. Darko has received several awards for his outstanding work, including the Green Talents Award from the German Federal Ministry of Education and Research in 2020, the Global Top Peer Reviewer Award from the Web of Science Group in 2019, the Outstanding Overseas Young Scholars Award from Central South University in 2019, and the Best Construction Technology and Management Student Award from KNUST in 2014.

Dr. Darko’s work has been supported by the Research Grants Council of Hong Kong, Chief Secretary for Administration’s Office of Hong Kong, and several internal grants.

Dr. Darko is an Associate Editor of Green Building and Construction Economics, an Associate Editor of Humanities and Social Sciences Communications, and an Academic Editor of Advances in Civil Engineering.

“I am excited to collaborate with colleagues from diverse disciplines to tackle the pressing challenges of sustainability and climate change, and to contribute to shaping a more just and beautiful world,” said Dr. Darko.

Integration of Urban Science and Urban Climate Adaptation Research: Opportunities to Advance Climate Action

Lobo, J., Aggarwal, R. M., Alberti, M., Allen-Dumas, M., Bettencourt, L. M. A., Boone, C., Brelsford, C., Broto, V. C., Eakin, H., Bagchi-Sen, S., Meerow, S., D’Cruz, C., Revi, A., Roberts, D. C., Smith, M. E., York, A., Lin, T., Bai, X., Solecki, W., … Gauthier, N. (2023). Integration of urban science and urban climate adaptation research: opportunities to advance climate action. Npj Urban Sustainability, 3(1), 32–39. https://doi.org/10.1038/s42949-023-00113-0

View Publication

Abstract

There is a growing recognition that responding to climate change necessitates urban adaptation. We sketch a transdisciplinary research effort, arguing that actionable research on urban adaptation needs to recognize the nature of cities as social networks embedded in physical space. Given the pace, scale and socioeconomic outcomes of urbanization in the Global South, the specificities and history of its cities must be central to the study of how well-known agglomeration effects can facilitate adaptation. The proposed effort calls for the co-creation of knowledge involving scientists and stakeholders, especially those historically excluded from the design and implementation of urban development policies.

EarthLab 2023-2024 Innovation Grant awardees

EarthLab selected the 2023-2024 Innovation Grant Awardees in April 2023. One of the projects chosen includes College of Built Environments researchers on the interdisciplinary team. The project description and research team is detailed below. “Cultivating Transdisciplinary Support for Equitable and Resilient Floodplain Solutions” Project Description: In 2021 a massive flood on the Nooksack River left a trail of destruction in its wake. Floods are the most expensive natural hazard in Washington State, a risk that is exacerbated by climate change….

Population Health Initiative awards multiple College of Built Environments teams planning grants

The Population Health Initiative announced 12 climate change planning grant awardees. Of those 12 teams, 4 include College of Built Environments researchers. Descriptions of their projects are below. Read the CBE News story here.   Linking Climate Adaptation and Public Health Outcomes in Yavatmal, Maharashtra Investigators Sameer H. Shah, Environmental and Forest Sciences Celina Balderas Guzmán, Landscape Architecture Pronoy Rai, Portland State University Project abstract This proposal collects primary interview data with landed and landless agriculturalists in Yavatmal district in…

College of Built Environments Faculty and Student receive Husky Sustainability Awards 2023

The Husky Sustainability Awards recognize individuals and groups across all University of Washington campuses who lead the way for sustainability at the University of Washington. This is the 14th year awards have been given by the UW Environmental Stewardship Committee. The Husky Sustainability Awards are given to students, faculty and staff from the Seattle, Bothell and Tacoma campuses who show impact, initiative, leadership and dedication around sustainability. Congratulations to the recipients from the College of Built Environments, who are listed below….

Say Where You Sample: Increasing Site Selection Transparency in Urban Ecology

Dyson, Karen; Dawwas, Emad; Poulton Kamakura, Renata; Alberti, Marina; Fuentes, Tracy L. (2023). Say Where You Sample: Increasing Site Selection Transparency in Urban Ecology. Ecosphere, 14(3).

View Publication

Abstract

Urban ecological studies have the potential to expand our understanding of socioecological systems beyond that of an individual city or region. Cross-comparative empirical work and synthesis are imperative to develop a general urban ecological theory. This can be achieved only if studies are replicable and generalizable. Transparency in methods reporting facilitates generalizability and replicability by documenting the decisions scientists make during the various steps of research design; this is particularly true for sampling design and selection because of their impact on both internal and external validity and the potential to unintentionally introduce bias. Three interdependent aspects of sample design are study sample selection (e.g., specific organisms, soils, or water), sample specification (measurement of specific variable of interest), and site selection (locations sampled). Of these, documentation of site selection—the where component of sample design—is underrepresented in the urban ecology literature. Using a stratified random sample of 158 papers from 12 major urban ecology journals, we investigated how researchers selected study sites in urban ecosystems and evaluated whether their site selection methods were transparent. We extracted data from these papers using a 50-question, theory-based questionnaire and a multiple-reviewer approach. Our sample represented almost 45 years of urban ecology research across 40 different countries. We found that more than 80% of the papers we read were not transparent in their site selection methodology. We do not believe site selection methods are replicable for 70% of the papers read. Key weaknesses include incomplete descriptions of populations and sampling frames, urban gradients, sample selection methods, and property access. Low transparency in reporting the where methodology limits urban ecologists' ability to assess the internal and external validity of studies' findings and to replicate published studies; it also limits the generalizability of existing studies. The challenges of low transparency are particularly relevant in urban ecology, a field where standard protocols for site selection and delineation are still being developed. These limitations interfere with the fields' ability to build theory and inform policy. We conclude by offering a set of recommendations to increase transparency, replicability, and generalizability.

Keywords

external validity, field ecology, generalizability, internal validity, replication, reproducibility, sampling design, site selection, theory building, transparency

$2 Million Award from National Science Foundation Will Support Team to Develop 3D-printed Microorganisms for Sustainable Construction Materials

An interdisciplinary research team led by University of Washington Chemistry Professor Alshakim Nelson received $2 million in funding from the National Science Foundation’s Emerging Frontiers in Research and Innovation (EFRI) program. The funding will be used to combine engineered microorganisms with 3D printing to create materials for sustainable built environments. This grant will provide funding to researchers at UW, the University of Texas at Austin, and University of California Davis over four years. In addition to Nelson, the team also…

Digital Governance in Rural Chengdu, China: Its Potential for Social-ecological Resilience

Wu, Shuang, Abramson, Daniel B., & Zhong, Bo. (2022). Digital Governance in Rural Chengdu, China: Its Potential for Social-ecological Resilience. Frontiers in Sustainable Cities, 4.

View Publication

Abstract

In this study, we echo the call from the UN to interpret Sustainable Development Goals (SDGs) in their regional context—in this case, the linpan (wooded lot) landscape of the Chengdu Plain, in Sichuan, China, where the shocks and stresses of recent, rapid administrative-economic urbanization are testing the resilience of some of the world's most sustainably productive and long- and densely-settled agrarian environments. In recent years, fine-grained information and communications technology (ICT) governance tools in Chengdu, such as “grid management”, present opportunities to sustain and scale up the collection of data necessary to validate and refine indicators of landscape resilience, and use them to regulate development, in accordance with SDG goal 11 to enhance legislation, governance, and capacity via information gathering and sharing. ICT-based governance in combination with traditional place-based knowledge can play a critical role in ensuring the resilience of urban-rural co-development. To realize this potential, however, ICT-enabled governance needs to incorporate greater transparency and more local feedback loops and enable greater participation from older farmers and women, to inform household and community-level land-use choices and initiatives. It also needs to link regulatory functions with marketing and pricing functions so that farmers may benefit from the sustainable practices they are encouraged to adopt.

 

Plywood on steroids: CBE experiments with building materials for a sustainable future

Complex structures jointed like origami. Office walls and ceilings that swoop and bend over enormous open spaces. Experimental pavilions made with robotic fabrication techniques. This is a world of architecture made possible by mass-timber framing. And, it’s a world that’s becoming more environmentally and acoustically sound through the work of UW College of Built Environments, Department of Architecture Assistant Professor Tomás Méndez Echenagucia, UW Master of Science in Architecture/Design Technology student Nathan Brown, and other collaborators. Mass timber is a…