Rottle, Nancy, Bowles, Mason, Andrews, Leann, & Engelke, Jennifer (2023). Constructed Floating Wetlands: A “Safe‐to‐Fail” Study with Multi‐sector Participation. Restoration Ecology, 31(1).
View Publication
Abstract
The Duwamish River Floating Wetlands project designed, built, and deployed constructed floating wetlands in the estuary of the urban Duwamish River in Seattle, Washington, during the 2019 and 2020 outmigration seasons for juvenile salmon. Using a “safe‐to‐fail” methodology and adaptive management strategies, these innovative floating wetland prototypes were custom designed to provide the native plants, invertebrates and slow water habitat that juvenile salmon require during their transition from fresh to salt water, and were monitored for these outcomes. This paper will provide insight into the prototype designs, adaptive management strategies and plant performance, and unique public‐private‐academic‐community partnerships that supported 2 years of design and research.
Keywords
community science; cross‐sector collaboration; designed ecosystems; Duwamish River; ecological restoration; green infrastructure
The College of Built Environments launched a funding opportunity for those whose research has been affected by the ongoing pandemic. The Research Restart Fund, with awards up to $5,000, has awarded 4 grants in the second of its two cycles. A grant was awarded to Manish Chalana, faculty member with Urban Design and Planning to help support his efforts to carry out archival research and fieldwork in India for his new book exploring the history and memory of non-dominant groups…
Feng, R., Wang, F., Liu, S., Qi, W., Zhao, Y., & Wang, Y. (2023). How Urban Ecological Land Affects Resident Heat Exposure: Evidence from the Mega-urban Agglomeration in China. Landscape and Urban Planning, 231.
View Publication.
Abstract
Resident heat exposure (RHE) is becoming more severe in the coming decades owing to rapid urbanization and climate change. Urban ecological land (UEL) provides important ecosystem services, such as mitigating the urban heat islands effect. However, the impacts of UEL on RHE remain poorly understood. This study quantifies the effects of UEL and its interaction with the natural-anthropogenic environment on RHE in the Guangdong-Hong Kong-Macao Greater Bay Area, a mega-urban agglomeration in China. The results showed a tight spatial–temporal coupling between the UEL and RHE: UEL transitioned from degradation-fragmentation in 2000–2010 to recovery-agglomeration in 2010–2020, while the RHE distribution evolved from intensification-expansion-inequity to mitigation-contraction-equity. The average explanatory power (q value) of UEL and its structure on RHE also increased by 75.99% and 70.79%, respectively. UEL patch diversity gradually dominated the RHE distribution, and the spatial marginal effect of UEL dominance increased by 234.97%. Moreover, RHE shifted from being dominated by UEL and anthropogenic heat emissions interactions to being jointly driven by UEL and natural-anthropogenic factors (especially the interaction of patch fragmentation with topography and built-up land expansion). The results of this study provide valuable information for nature-based (i.e., UEL) landscape planning and management to develop “human-centric” RHE mitigation strategies.
Keywords
Urban ecological land; Resident heat exposure; Spatial-temporal effects; Natural-anthropogenic factors; Interaction effect; Mega-urban agglomeration
Oshima, K. T. (Ed.). (2016). Kiyonori Kikutake: Between Land and Sea. Lars Müller Publishers.
View Publication.
Dannenberg, A. L., Frumkin, H., & Jackson, R. (Eds.). (2022). Making Healthy Places: Designing and Building for Health, Well-being, and Sustainability (2nd ed.). Island Press.
View Publication.
Anthony Hickling joins CLF with experience in environmental and social sustainability as well as nonprofit management and fundraising. His foundations in sustainable building are informed by experience at Presidio Graduate School where he received an MBA in Sustainable Solutions, as well as his work on the sustainability team at Webcor Builders in San Francisco. Through academic and professional experience he has learned to navigate the priorities of traditional business stakeholders while incorporating social and environmental externalities. From executing successful marketing plans to determining research priorities, Anthony believes that wide impact considerations and diversity of thought should be embedded into all decision-making.
Brad Benke, AIA, is a Research Engineer at the Carbon Leadership Forum focused on developing data-driven resources to help practitioners and policymakers adopt and scale decarbonization strategies in the built environment. With a background in deep-green architecture and consulting, Brad works to synthesize and improve life cycle assessment practices and tools within the AEC industry and deliver practical solutions for low-carbon building design and construction. His recent work includes leading the CLF WBLCA Benchmark Study and developing the background data and methodologies for the CLF Embodied Carbon Policy Reduction Calculator. Brad is a former co-chair of AIA Seattle’s Committee on the Environment, and a former Senior Architect at McLennan Design, where he led diverse teams and stakeholders toward achieving decarbonization goals for buildings and organizations across the country.
De Almeida, Catherine. (2019). Performative By-Products: The Emergence of Waste Reuse Strategies at the Blue Lagoon. Journal of Landscape Architecture, 13(3), 64-77.
View Publication
Abstract
Materials and landscapes associated with waste are perceived as objectionable. By reactivating and embracing waste conditions as desirable opportunities for diverse programmes rooted in economy, ecology, and culture, designers can form hybrid assemblages on waste sites through the exchange of waste materials—a landscape lifecycles approach. This frame-work is applicable to not only design research, but also as a critical lens for evaluating the landscape performance of existing projects that engage with waste reuse. The Blue Lagoon in southwest Iceland materialized as a spa industry out of geothermal waste effluent from the adjacent Svartsengi Geothermal Power Station, reusing undesirable materials and transforming a waste landscape through diversified material recovery strategies. Featuring an industrial by-product turned economic generator, this case study reveals the opportunities for reusing geothermal ‘waste’ in these emergent landscape conditions, which hybridize economies with recreation, research, and ecology, and shift the conventional relationship with waste from passive to performative.
Keywords
Waste reuse; Blue Lagoon; material lifecycles; Iceland; landscape reclamation
Okechi, Ikechukwu K.; Aguayo, Federico; Torres, Anthony. (2022). Coefficient of Thermal Expansion of Concrete Produced with Recycled Concrete Aggregates. Journal of Civil Engineering and Construction, 11(2), 65-74.
View Publication
Abstract
This study presents a comparison between the coefficient of thermal expansion (CTE) of concrete produced with natural aggregate and that of concrete produced with recycled concrete aggregate. In order to achieve this, natural aggregate concrete (NAC) specimens were produced, tested, then crushed and sieved in the laboratory to obtain recycled concrete aggregates, which was then used in the production of recycled aggregate concrete (RAC) specimens. The RAC samples were then tested and compared to the NAC samples. The CTE testing was carried out using a AFTC2 CTE measurement system produced by Pine Instrument Company. In addition to CTE testing, the water absorption, specific gravity, and unit weight of the aggregates was determined. A vacuum impregnation procedure was used for the water absorption test. The recycled aggregate properties showed a significantly higher absorption capacity than that of the natural aggregates, while the unit weight and specific gravity of the recycled aggregate were lower than that of the natural aggregates. The average CTE results showed that both the NAC and the RAC samples expanded similarly. The results show that the CTE of RAC depends on the natural aggregate used in the NAC, which was recycled to produce the RAC. Also, there was no significant difference between the average CTE values of the RAC and that of NAC that could discredit the use of recycled aggregate in concrete.
Keywords
Coefficient of thermal expansion; Recycled concrete aggregate; Natural concrete aggregate.