Skip to content

Transitions In Urban Waterfronts: Imagining, Contesting, And Sustaining The Aquatic/terrestrial Interface

Taufen, Anne; Yocom, Ken. (2021). Transitions In Urban Waterfronts: Imagining, Contesting, And Sustaining The Aquatic/terrestrial Interface. Sustainability, 13(1).

View Publication

Abstract

Urban waterfronts represent hybrid locations of ecological, economic, and social zones of transition and dispersal, spatially reified between land and water. Yet, through advancements in technology and the emergence of globally linked economies, the structure and function of urban waterfronts as economic and industrial drivers is becoming increasingly complex. As cities seek to redevelop their waterfronts in response to these changes, recent research and scholarship has focused on understanding the ecological, social, and economic benefits derived from urban waterfronts. This research reveals that their benefits are unevenly distributed among local and regional populations as sites of accumulated inequity and inaccessibility that are generative for only a relatively small percentage of the people living in a metropolitan area. Set within this paradoxical nexus, this paper frames a call to scientists, planners, academics, and waterfront activists to expand urban waterfront research from an indicator and benefits model to incorporate three conceptual tools for better understanding key dimensions of waterfront reclamation within the context of green infrastructure research: urban hybridity, functional performance and hierarchies of access. We explore these key dimensions in relation to the waterfront redevelopment of Tacoma, Washington, USA. By acknowledging the hybridity of urban waterfronts, we illustrate that their relative performance and accessibility require ongoing empirical study and practical intervention. Our theoretical explorations plot some of the potential areas of investigation for examining the structural and functional transitions of urban waterfronts as critical locations for green infrastructure development for the 21st century.

Keywords

Place Attachment; Community Participation; Cities; Justice; Indicators; Challenges; Resilience; Governance; Space; Urban Waterfronts; Complexity; Urban Hybridity; Functional Performance; Hierarchies Of Access; Public Access; Stormwater Management; Infrastructure; Reclamation; Green Aspects; Waterfront Development; Urban Areas; Terrestrial Environments; Waterfronts; Economics; Hierarchies; Redevelopment; Regulation; Dispersal; Economic Activity; Shorelines; Regions; Terrestrial Ecosystems; Sustainable Development; Structure-function Relationships; Ports; Rivers; Metropolitan Areas; Urbanization; United States--us

Measuring Neighbourhood Air Pollution: The Case of Seattle’s International District.

Bassok, Alon; Hurvitz, Phil M.; Bae, C-H. Christine; Larson, Timothy. (2010). Measuring Neighbourhood Air Pollution: The Case of Seattle’s International District. Journal Of Environmental Planning & Management, 53(1), 23 – 39.

View Publication

Abstract

Current US regulatory air quality monitoring networks measure ambient levels of pollutants and cannot capture the effects of mobile sources at the micro-scale. Despite the fact that overall air quality has been getting better, more vulnerable populations (children, the elderly, minorities and the poor) continue to suffer from traffic-related air pollution. As development intensifies in urban areas, more people are exposed to road-related air pollution. However, the only consideration given to air quality, if any, is based on ambient measures. This paper uses an inexpensive, portable Particle Soot Absorption Photometer (PSAP) to measure Black Carbon (BC) emissions, a surrogate for diesel fuels emissions, in Seattle's International District. With the aid of a GPS receiver, street-level BC data were geocoded in real space-time. It was found that pollution levels differed substantially across the study area. The results show the need for street-level air pollution monitoring, revisions in current land use and transportation policies, and air quality planning practice.

Keywords

Emission Standards; Air Pollution; Atmospheric Deposition; Social Groups; Waste Products; Sanitary Landfills; Black Carbon; Freeway Air Pollution Sheds (faps); Land Use; Mobile Monitoring; Neighbourhood Air Quality; Aerosol Light-absorption; Respiratory Health; Coefficient; Exposure; Symptoms; Children; Pollutants; Particles; Exhaust; Asthma

Improved Fog Collection Using Turf Reinforcement Mats

Feld, Shara I.; Spencer, Benjamin R.; Bolton, Susan M. (2016). Improved Fog Collection Using Turf Reinforcement Mats. Journal Of Sustainable Water In The Built Environment, 2(3).

View Publication

Abstract

Impoverished communities are particularly vulnerable to increasing water scarcity. The development of low-cost technologies that improve access to unconventional water sources, such as the freshwater contained in fog, is one way to address water scarcity. Passive fog collectors, sited to maximize exposure to orographic and advection fog, are typically constructed using 35% Raschel mesh stretched within a structural frame. To assess improvements to this technology, the fog collection potential of nonwoven turf reinforcement mats ( TRM), underwent preliminary testing in a laboratory fog tunnel and more conclusive testing at a field site in Lima, Peru. In fog tunnel tests, both of the two tested TRM specimens increased fog collection yields over 35% Raschel mesh by 26 and 33% respectively. At one field site, the tested mats increased fog collection yields over 35% Raschel mesh by 62 and 75% respectively. At a second field site, these materials increased collection volumes over the 35% Raschel mesh by 146 and 178% respectively. Differences in TRM performance at different sites were likely due to different orientation to prevailing winds at the two test stations. This work suggests that nonwoven turf reinforcement mats have the potential to improve water access in arid, foggy low income communities. (C) 2016 American Society of Civil Engineers.

Keywords

Water; Efficiency; Fresh Water; Water Resources; Water Supply; Peru; Fog Capture

Development of a Regional Lidar-Derived Above-Ground Biomass Model with Bayesian Model Averaging for Use in Ponderosa Pine and Mixed Conifer Forests in Arizona and New Mexico, USA

Tenneson, Karis; Patterson, Matthew S.; Mellin, Thomas; Nigrelli, Mark; Joria, Peter; Mitchell, Brent. (2018). Development of a Regional Lidar-Derived Above-Ground Biomass Model with Bayesian Model Averaging for Use in Ponderosa Pine and Mixed Conifer Forests in Arizona and New Mexico, USA. Remote Sensing, 10(3).

View Publication

Abstract

Historical forest management practices in the southwestern US have left forests prone to high-severity, stand-replacement fires. Reducing the cost of forest-fire management and reintroducing fire to the landscape without negative impact depends on detailed knowledge of stand composition, in particular, above-ground biomass (AGB). Lidar-based modeling techniques provide opportunities to increase ability of managers to monitor AGB and other forest metrics at reduced cost. We developed a regional lidar-based statistical model to estimate AGB for Ponderosa pine and mixed conifer forest systems of the southwestern USA, using previously collected field data. Model selection was performed using Bayesian model averaging (BMA) to reduce researcher bias, fully explore the model space, and avoid overfitting. The selected model includes measures of canopy height, canopy density, and height distribution. The model selected with BMA explains 71% of the variability in field-estimates of AGB, and the RMSE of the two independent validation data sets are 23.25 and 32.82 Mg/ha. The regional model is structured in accordance with previously described local models, and performs equivalently to these smaller scale models. We have demonstrated the effectiveness of lidar for developing cost-effective, robust regional AGB models for monitoring and planning adaptively at the landscape scale.

Keywords

Laser Scanner Data; Landscape Restoration Program; Canopy Fuel Parameters; Discrete-return Lidar; Western United-states; Wave-form Lidar; Airborne Laser; Tropical Forest; Climate-change; Adaptive Management; Forest Biomass; Aboveground Biomass; Airborne Lidar; Monitoring; Regional Forest Inventory; Variable Selection; Bayesian Model Averaging; Multiple Linear Regression

Life-Cycle Cost and Carbon Footprint Analysis for Light-framed Residential Buildings Subjected to Tornado Hazard

Adhikari, Pramodit; Mahmoud, Hussam; Xie, Aiwen; Simonen, Kathrina; Ellingwood, Bruce. (2020). Life-Cycle Cost and Carbon Footprint Analysis for Light-framed Residential Buildings Subjected to Tornado Hazard. Journal Of Building Engineering, 32.

View Publication

Abstract

Light-frame wood building construction dominates the single-family residential home market in the United States. Such buildings are susceptible to damage from extreme winds due to hurricanes in coastal areas and tornados in the Midwest. The consequences of extreme winds on the built environment and on social and economic institutions within the community can be severe and are likely to increase in the coming decades as a result of increases in urbanization and economic development and the potential impacts of changing climate in hazard prone areas. Current building practices provide minimum standards for occupant safety and health, including structural integrity, water and sanitation, lighting, ventilation, means of egress and fire protection. However, they generally do not consider building resilience, which includes robustness and an ability to recover following extreme natural hazard events. Nor do they address sustainability, the notion that building design, construction and rehabilitation should not adversely impact the environment. In this paper, we establish a generalized cost and carbon footprint life-cycle analysis methodology for examining the benefits of different building practices for residential light-frame wood construction subjected to tornado hazards. A multiobjective approach is used to reveal tradeoffs between resilient and sustainable practices for typical residential construction. We show that when the life cycle of a typical residence is considered, a balance between resilience, sustainability and cost might be achieved in design and rehabilitation of residential building construction for tornado hazards.

Keywords

Performance; Risk; Fragility; Residential Buildings; Life-cycle Analysis; Resilience; Optimal Decisions; Sustainable Construction; Tornadoes

Comparative Life Cycle Assessment of Mass Timber and Concrete Residential Buildings: A Case Study in China

Chen, Cindy X.; Pierobon, Francesca; Jones, Susan; Maples, Ian; Gong, Yingchun; Ganguly, Indroneil. (2022). Comparative Life Cycle Assessment of Mass Timber and Concrete Residential Buildings: A Case Study in China. Sustainability, 14(1).

View Publication

Abstract

As the population continues to grow in China's urban settings, the building sector contributes to increasing levels of greenhouse gas (GHG) emissions. Concrete and steel are the two most common construction materials used in China and account for 60% of the carbon emissions among all building components. Mass timber is recognized as an alternative building material to concrete and steel, characterized by better environmental performance and unique structural features. Nonetheless, research associated with mass timber buildings is still lacking in China. Quantifying the emission mitigation potentials of using mass timber in new buildings can help accelerate associated policy development and provide valuable references for developing more sustainable constructions in China. This study used a life cycle assessment (LCA) approach to compare the environmental impacts of a baseline concrete building and a functionally equivalent timber building that uses cross-laminated timber as the primary material. A cradle-to-gate LCA model was developed based on onsite interviews and surveys collected in China, existing publications, and geography-specific life cycle inventory data. The results show that the timber building achieved a 25% reduction in global warming potential compared to its concrete counterpart. The environmental performance of timber buildings can be further improved through local sourcing, enhanced logistics, and manufacturing optimizations.

Keywords

Mass Timber; Embodied Carbon; Climate Change; Carbon Reduction; Building Footprint; Built Environment; Forest Products; Life Cycle Analysis; Environmental Impacts; Wood Laminates; Geography; Concrete; Flooring; Manufacturing; Global Warming; Concrete Construction; Construction Materials; Emissions Trading; Greenhouse Gases; Residential Areas; Energy Consumption; Life Cycle Assessment; Greenhouse Effect; Life Cycles; Construction Industry; Logistics; Floor Coverings; Urbanization; Timber; Urban Environments; Building Components; Emissions; Residential Buildings; Carbon Footprint; Urban Areas; Environmental Impact; Building Construction; Case Studies; Wood Products; Mitigation; Buildings; Timber (structural); United States--us; China

Maximizing the Sustainability of Integrated Housing Recovery Efforts

El-Anwar, Omar; El-Rayes, Khaled; Elnashai, Amr S. (2010). Maximizing the Sustainability of Integrated Housing Recovery Efforts. Journal Of Construction Engineering And Management, 136(7), 794 – 802.

View Publication

Abstract

The large-scale and catastrophic impacts of Hurricanes Katrina and Rita in 2005 challenged the efficacy of traditional postdisaster temporary housing methods. To address these challenges, the U.S. Congress appropriated $400 million to the Department of Homeland Security to support alternative housing pilot programs, which encourage innovative housing solutions that will facilitate sustainable and permanent affordable housing in addition to serving as temporary housing. Facilitating and maximizing the sustainability of postdisaster alternative housing is an important objective that has significant social, economic, and environmental impacts. This paper presents the development of a novel optimization model that is capable of (1) evaluating the sustainability of integrated housing recovery efforts under the alternative housing pilot program and (2) identifying the housing projects that maximize sustainability. An application example is analyzed to demonstrate the use of the developed model and its unique capabilities in maximizing the sustainability of integrated housing recovery efforts after natural disasters.

Keywords

Northridge Earthquake; United-states; Disasters; Optimization; Postdisaster Alternative Housing; Sustainability; Housing Recovery

County Planners’ Perceptions of Land-Use Planning Tools for Environmental Hazard Mitigation: A Survey in the US Pacific States

Ge, Yue ‘gurt’; Lindell, Michael K. (2016). County Planners’ Perceptions of Land-Use Planning Tools for Environmental Hazard Mitigation: A Survey in the US Pacific States. Environment And Planning B-planning & Design, 43(4), 716 – 736.

View Publication

Abstract

Land-use planning tools have been extensively applied in the U.S. to achieve environmental sustainability and disaster resiliency for local communities. An important issue related to land-use planning tools is planners' beliefs about the ways in which these tools differ from each other and, thus, how planners choose among these tools for environmental hazard mitigation. A web-based survey collected data from planners in counties (or boroughs) in the five U.S. Pacific states (where county land-use planning is limited to unincorporated areas). The results indicate that planners substantially, but not completely, agreed in their perceptions of planning tools, that planners' perceptions of planning tools are minimally related to their personal characteristics and those of their jurisdictions, and that planners' perceptions of planning tools are significantly correlated with the capacity of their planning agencies. Planners viewed effectiveness (a desirable attribute) as positively correlated with economic costs and other impediments (which are undesirable attributes) so they must make trade-offs among these attributes and choose the most appropriate tool when formulating a growth management strategy.

Keywords

Interrater Reliability; Local Commitment; Management; Agreement; Index; Planners' Perceptions; Plan-making Processes; Land-use Planning Tools; Environmental Hazard Mitigation; Us Pacific States

Six Fundamental Aspects for Conceptualizing Multidimensional Urban Form: A Spatial Mapping Perspective

Wentz, Elizabeth A.; York, Abigail M.; Alberti, Marina; Conrow, Lindsey; Fischer, Heather; Inostroza, Luis; Jantz, Claire; Pickett, Steward T. A.; Seto, Karen C.; Taubenboeck, Hannes. (2018). Six Fundamental Aspects for Conceptualizing Multidimensional Urban Form: A Spatial Mapping Perspective. Landscape And Urban Planning, 179, 55 – 62.

View Publication

Abstract

Urbanization is currently one of the most profound transformations taking place across the globe influencing the flows of people, energy, and matter. The urban form influences and is influenced by these flows and is therefore critical in understanding and how urban areas affect and are affected by form. Nevertheless, there is a lack of uniformity in how urban form is analyzed. Urban form analyzed from a continuum of a simple urban versus non-urban classification to highly detailed representations of land use and land cover. Either end of the representation spectrum limits the ability to analyze within-urban dynamics, to make cross-city comparisons, and to produce generalizable results. In the framework of remote sensing and geospatial analysis, we identify and define six fundamental aspects of urban form, which are organized within three overarching components. Materials, or the physical elements of the urban landscape, consists of three aspects (1) human constructed elements, (2) the soil-plant continuum, and (3) water elements. The second component is configuration, which includes the (4) two- and three-dimensional space and (5) spatial pattern of urban areas. Lastly, because of the dynamics of human activities and biophysical processes, an important final component is the change of urban form over (6) time. We discuss how a this urban form framework integrates into a broader discussion of urbanization.

Keywords

Ecosystem Services; Land-use; Reconceptualizing Land; Cellular-automata; Heterogeneity; Framework; Model; Emissions; Dynamics; Cities; Gis; Remote Sensing; Land Use; Land Cover; Urban Form; Urban Materials; Energy; Humans; Land Use And Land Cover Maps; Landscapes; Urban Areas; Urbanization

The Complexity of Urban Eco-Evolutionary Dynamics

Alberti, Marina; Palkovacs, Eric P.; Des Roches, Simone; De Meester, Luc; Brans, Kristien, I; Govaert, Lynn; Grimm, Nancy B.; Harris, Nyeema C.; Hendry, Andrew P.; Schell, Christopher J.; Szulkin, Marta; Munshi-south, Jason; Urban, Mark C.; Verrelli, Brian C. (2020). The Complexity of Urban Eco-Evolutionary Dynamics. Bioscience, 70(9), 772 – 793.

View Publication

Abstract

Urbanization is changing Earth's ecosystems by altering the interactions and feedbacks between the fundamental ecological and evolutionary processes that maintain life. Humans in cities alter the eco-evolutionary play by simultaneously changing both the actors and the stage on which the eco-evolutionary play takes place. Urbanization modifies land surfaces, microclimates, habitat connectivity, ecological networks, food webs, species diversity, and species composition. These environmental changes can lead to changes in phenotypic, genetic, and cultural makeup of wild populations that have important consequences for ecosystem function and the essential services that nature provides to human society, such as nutrient cycling, pollination, seed dispersal, food production, and water and air purification. Understanding and monitoring urbanization-induced evolutionary changes is important to inform strategies to achieve sustainability. In the present article, we propose that understanding these dynamics requires rigorous characterization of urbanizing regions as rapidly evolving, tightly coupled human-natural systems. We explore how the emergent properties of urbanization affect eco-evolutionary dynamics across space and time. We identify five key urban drivers of change-habitat modification, connectivity, heterogeneity, novel disturbances, and biotic interactions-and highlight the direct consequences of urbanization-driven eco-evolutionary change for nature's contributions to people. Then, we explore five emerging complexities-landscape complexity, urban discontinuities, socio-ecological heterogeneity, cross-scale interactions, legacies and time lags-that need to be tackled in future research. We propose that the evolving metacommunity concept provides a powerful framework to study urban eco-evolutionary dynamics.

Keywords

Habitat Modification; Seed Dispersal; Water Purification; Species Diversity; Human Behavior; Ecosystem Services; Nutrient Cycles; Cross-scale Interactions; Ecological Consequences; Contemporary Evolution; Gradient Analysis; Trophic Dynamics; Land-cover; Community; Biodiversity; Adaptation; Urban Ecology; Eco-evolutionary Dynamics; Coupled Human-natural Systems; Metacommunities; Ecology; Urbanization; Evolution; Water Treatment; Environmental Monitoring; Species Composition; Environmental Changes; Play; Food Production; Air Purification; Sustainability; Dynamic Tests; Air Monitoring; Urban Areas; Food Webs; Heterogeneity; Food Chains; Pollination; Dynamics; Complexity; Dispersal; Microclimate