Skip to content

Does Polycentric Development Produce Less Transportation Carbon Emissions? Evidence from Urban Form Identified by Night-Time Lights Across US Metropolitan Areas

Jung, Meen Chel; Kang, Mingyu; Kim, Sunghwan. (2022). Does Polycentric Development Produce Less Transportation Carbon Emissions? Evidence from Urban Form Identified by Night-Time Lights Across US Metropolitan Areas. Urban Climate, 44.

View Publication

Abstract

Identifying the comprehensive metropolitan urban form is important to propose effective policies to mitigate transportation carbon emissions. A publicly accessible night-time light dataset was used to identify urban centers and develop two polycentric indices to compute the composition and configuration of urban form, respectively. We used the most populous 103 U.S. metropolitan statistical areas (MSAs), with their corresponding transportation carbon emissions, polycentric indices, population sizes, gross domestic product (GDP) per capita, and road network densities. We first explored the typology of urban form and classified MSAs into six types based on two polycentric indices. We then introduced correlation analysis and statistical models to test the relationships between polycentric urban form and transportation carbon emissions. We found: (1) more urban centers lead to more emissions (compositional dimension), (2) more spatially distributed urban centers result in less emissions (configurational dimension), and (3) population and GDP per capita are positively related to carbon emissions. These findings suggest the importance of measuring two polycentric dimensions separately but using them together. Urban planners should consider mixed strategies that combine the traditional intra-center-based smart growth principles and the metropolitan-level inter-centers spatial plan to effectively counteract climate change.

Keywords

Polycentric Urban Form; Urban Centers; Carbon Emissions; Night-time Lights; Smart Growth; Climate Change; Co2 Emissions; Spatial Structure; Satellite Imagery; Cities; Patterns; Trends; Growth; Determinants; China

Terrestrial Carbon Stocks across a Gradient of Urbanization: A Study of the Seattle, WA Region

Hutyra, Lucy R.; Yoon, Byungman; Alberti, Marina. (2011). Terrestrial Carbon Stocks across a Gradient of Urbanization: A Study of the Seattle, WA Region. Global Change Biology, 17(2), 783 – 797.

View Publication

Abstract

Most of our global population and its CO2 emissions can be attributed to urban areas. The process of urbanization changes terrestrial carbon stocks and fluxes, which, in turn, impact ecosystem functions and atmospheric CO2 concentrations. Using the Seattle, WA, region as a case study, this paper explores the relationships between aboveground carbon stocks and land cover within an urbanizing area. The major objectives were to estimate aboveground live and dead terrestrial carbon stocks across multiple land cover classes and quantify the relationships between urban cover and vegetation across a gradient of urbanization. We established 154 sample plots in the Seattle region to assess carbon stocks as a function of distance from the urban core and land cover [urban (heavy, medium, and low), mixed forest, and conifer forest land covers]. The mean (and 95% CI) aboveground live biomass for the region was 89 +/- 22 Mg C ha-1 with an additional 11.8 +/- 4 Mg C ha-1 of coarse woody debris biomass. The average live biomass stored within forested and urban land covers was 140 +/- 40 and 18 +/- 14 Mg C ha-1, respectively, with a 57% mean vegetated canopy cover regionally. Both the total carbon stocks and mean vegetated canopy cover were surprisingly high, even within the heavily urbanized areas, well exceeding observations within other urbanizing areas and the average US forested carbon stocks. As urban land covers and populations continue to rapidly increase across the globe, these results highlight the importance of considering vegetation in urbanizing areas within the terrestrial carbon cycle.

Keywords

Urbanization & The Environment; Carbon Cycle; Carbon In Soils; Climate Change Prevention; Population & The Environment; Land Cover; Cities & Towns -- Environmental Conditions; Seattle (wash.); Washington (state); Climate Change; Development; Mitigation; Pacific Northwest; Urban; United-states; Woody Debris; Storage; Growth; Responses; Fluxes; Co2; Sequestration; Landscape; Forests

Advancing Urban Ecology toward a Science of Cities

McPhearson, Timon; Pickett, Steward T. A.; Grimm, Nancy B.; Niemela, Jari; Alberti, Marina; Elmqvist, Thomas; Weber, Christiane; Haase, Dagmar; Breuste, Juergen; Qureshi, Salman. (2016). Advancing Urban Ecology toward a Science of Cities. Bioscience, 66(3), 198 – 212.

View Publication

Abstract

Urban ecology is a field encompassing multiple disciplines and practical applications and has grown rapidly. However, the field is heterogeneous as a global inquiry with multiple theoretical and conceptual frameworks, variable research approaches, and a lack of coordination among multiple schools of thought and research foci. Here, we present an international consensus on how urban ecology can advance along multiple research directions. There is potential for the field to mature as a holistic, integrated science of urban systems. Such an integrated science could better inform decisionmakers who need increased understanding of complex relationships among social, ecological, economic, and built infrastructure systems. To advance the field requires conceptual synthesis, knowledge and data sharing; cross-city comparative research, new intellectual networks, and engagement with additional disciplines. We consider challenges and opportunities for understanding dynamics of urban systems. We suggest pathways for advancing urban ecology research to support the goals of improving urban sustainability and resilience, conserving urban biodiversity, and promoting human well-being on an urbanizing planet.

Keywords

Urban Ecology (biology); Urban Biodiversity; Urbanization & The Environment; Life Sciences; Medical Sciences; Comparative Research; Complexity; Conceptual Frameworks; Urban Ecology; Urban Systems; Ecosystem Services; Green Spaces; Resilience; Framework; Systems; Design; Water; Tree

Reintegrating The North American Beaver (castor Canadensis) In The Urban Landscape.

Bailey, David R.; Dittbrenner, Benjamin J.; Yocom, Ken P. (2019). Reintegrating The North American Beaver (castor Canadensis) In The Urban Landscape. Wires Water, 6(1).

View Publication

Abstract

In recent decades, ecological restoration and landscape architecture have focused on reintegrating ecological processes in the urban environment to support greater habitat complexity and increase biodiversity. As these values are more broadly recognized, new approaches are being investigated to increase ecosystem services and ecological benefits in urban areas. Ecosystem engineers, such as the North American beaver (Castor canadensis), can create complex habitat and influence ecological processes in natural environments. Through dam building and wetland formation, beaver can create fish habitat, diversify vegetation in riparian zones, and aggrade sediment to increase stream productivity. As beaver populations have increased in urban areas across North America, their presence presents challenges and opportunities. Beaver can be integrated into the design of new and established urban green spaces to improve ecosystem functions. If managed properly, the conflicts that beaver sometimes create can be minimized. In this paper, we examine how landscape architects and restoration ecologists are anticipating the geomorphic and hydrological implications of beaver reintroduction in the design of wetlands and urban natural areas at regional and site levels. We present an urban beaver map and three case studies in Seattle, WA, USA, to identify various approaches, successes, and management strategies for integrating the actions of beaver into project designs. We make recommendations for how designers can capitalize on the benefits of beaver by identifying sites with increased likelihood of colonization, leveraging ecosystem engineers in design conception, designing site features to reduce constraints for the reintroduction and establishment of beaver, and anticipating and managing impacts. This article is categorized under: Water and Life > Conservation, Management, and Awareness Engineering Water > Planning Water

Keywords

Beavers; Cities & Towns In Art; Nature; Riparian Areas; Municipal Water Supply; Restoration Ecology; Wetland Ecology; United States; Seattle (wash.); North America; Beaver; Biodiversity; Castor Canadensis; Ecological Design; Ecological Restoration; Ecosystem Engineers; Ecosystem Services; Species Richness; Wetland Habitat; River-basin; Dams; Channel; Streams; Impact; Water; Ponds; Ecology; Urban Populations; Habitats; Ecosystem Management; Landscape Architecture; Colonization; Fish; Geomorphology; Habitat; Design; Ecological Monitoring; Landscape; Urban Areas; Restoration; Riparian Environments; Ecosystems; Wetlands; Ecologists; Reintroduction; Case Studies; Environmental Restoration; Open Spaces; Freshwater Mammals; Urban Environments; Aquatic Mammals; Water Conservation; Ecological Effects; Disputes; Design Engineering; Dam Construction; Engineers; Urban Planning; Complexity; Hydrology

Application of Prevention Through Design (PTD) to Improve the Safety of Solar Installations on Small Buildings

Ho, Chung; Lee, Hyun Woo; Gambatese, John A. (2020). Application of Prevention Through Design (PTD) to Improve the Safety of Solar Installations on Small Buildings. Safety Science, 125.

View Publication

Abstract

As a viable, clean and renewable energy resource, solar energy has gained a significant interest in the US residential sector. Most solar systems are installed on rooftops to take advantage of available space and reduce land use. However, this installation environment also exposes workers to unique safety hazards related to existing roof conditions such as slippery roofing materials, irregular roof layouts, and steep roof slopes. Although Prevention through Design (ND) has been widely considered as an effective way to address safety issues during the design phase, little to no studies have applied ND to improve safety in solar energy installations. To fill this knowledge gap, this research aimed to investigate how, during the design phase, to address the safety concerns of solar workers when installing solar energy systems on residential buildings. Through a series of interviews, four case studies, and a seminar, seven solar ND attributes were identified: roofing materials, roof slopes, roof accessories, panel layouts, fall protection systems, lifting methods and electrical systems. Based on the attributes, a ND protocol was developed that can serve as guidance for implementing ND in solar installations. This paper presents the research activities and findings, and feedback gained from solar contractors through a seminar on the study. The study is expected to contribute to reducing safety hazards by implementing ND, help improve safety performance in solar installations on small residential buildings and support the promotion of safety in sustainable construction.

Keywords

Roofing Materials; Renewable Energy Sources; Sustainable Construction; Solar Energy; Clean Energy; Construction Safety; Prevention Through Design; Small Buildings; Solar Installations; Buildings (structures); Construction Industry; Hazards; Occupational Safety; Roofs; Safety; Solar Power; Sustainable Development; Steep Roof Slopes; Design Phase; Solar Energy Installations; Solar Workers; Installing Solar Energy Systems; Residential Buildings; Seven Solar Ptd Attributes; Roof Accessories; Ptd Protocol; Solar Contractors; Safety Performance; Viable Energy Resource; Clean Energy Resource; Renewable Energy Resource; Us Residential Sector; Solar Systems; Installation Environment; Unique Safety Hazards; Roof Conditions; Slippery Roofing Materials; Irregular Roof Layouts; Issues; Accident Prevention; Protocol; Energy Sources; Residential Areas; Land Use; Prevention; Design; Falls; Occupational Hazards; Contractors; Residential Energy; Protection Systems; Renewable Energy; Buildings; Roofing; Layouts

Global Urban Environmental Change Drives Adaptation in White Clover

Santangelo, James S.; Ness, Rob W.; Cohan, Beata; Fitzpatrick, Connor R.; Innes, Simon G.; Koch, Sophie; Miles, Lindsay S.; Munim, Samreen; Peres-neto, Pedro R.; Prashad, Cindy; Tong, Alex T.; Aguirre, Windsor E.; Akinwole, Philips O.; Alberti, Marina; Alvarez, Jackie; Anderson, Jill T.; Anderson, Joseph J.; Ando, Yoshino; Andrew, Nigel R.; Angeoletto, Fabio; Anstett, Daniel N.; Anstett, Julia; Aoki-goncalves, Felipe; Arietta, A. Z. Andis; Arroyo, Mary T. K.; Austen, Emily J.; Baena-diaz, Fernanda; Barker, Cory A.; Baylis, Howard A.; Beliz, Julia M.; Benitez-mora, Alfonso; Bickford, David; Biedebach, Gabriela; Blackburn, Gwylim S.; Boehm, Mannfred M. A.; Bonser, Stephen P.; Bonte, Dries; Bragger, Jesse R.; Branquinho, Cristina; Brans, Kristien, I; Bresciano, Jorge C.; Brom, Peta D.; Bucharova, Anna; Burt, Briana; Cahill, James F.; Campbell, Katelyn D.; Carlen, Elizabeth J.; Carmona, Diego; Castellanos, Maria Clara; Centenaro, Giada; Chalen, Izan; Chaves, Jaime A.; Chavez-pesqueira, Mariana; Chen, Xiao-yong; Chilton, Angela M.; Chomiak, Kristina M.; Cisneros-heredia, Diego F.; Cisse, Ibrahim K.; Classen, Aimee T.; Comerford, Mattheau S.; Fradinger, Camila Cordoba; Corney, Hannah; Crawford, Andrew J.; Crawford, Kerri M.; Dahirel, Maxime; David, Santiago; De Haan, Robert; Deacon, Nicholas J.; Dean, Clare; Del-val, Ek; Deligiannis, Eleftherios K.; Denney, Derek; Dettlaff, Margarete A.; Dileo, Michelle F.; Ding, Yuan-yuan; Dominguez-lopez, Moises E.; Dominoni, Davide M.; Draud, Savannah L.; Dyson, Karen; Ellers, Jacintha; Espinosa, Carlos, I; Essi, Liliana; Falahati-anbaran, Mohsen; Falcao, Jessica C. F.; Fargo, Hayden T.; Fellowes, Mark D. E.; Fitzpatrick, Raina M.; Flaherty, Leah E.; Flood, Padraic J.; Flores, Maria F.; Fornoni, Juan; Foster, Amy G.; Frost, Christopher J.; Fuentes, Tracy L.; Fulkerson, Justin R.; Gagnon, Edeline; Garbsch, Frauke; Garroway, Colin J.; Gerstein, Aleeza C.; Giasson, Mischa M.; Girdler, E. Binney; Gkelis, Spyros; Godsoe, William; Golemiec, Anneke M.; Golemiec, Mireille; Gonzalez-lagos, Cesar; Gorton, Amanda J.; Gotanda, Kiyoko M.; Granath, Gustaf; Greiner, Stephan; Griffiths, Joanna S.; Grilo, Filipa; Gundel, Pedro E.; Hamilton, Benjamin; Hardin, Joyce M.; He, Tianhua; Heard, Stephen B.; Henriques, Andre F.; Hernandez-poveda, Melissa; Hetherington-rauth, Molly C.; Hill, Sarah J.; Hochuli, Dieter F.; Hodgins, Kathryn A.; Hood, Glen R.; Hopkins, Gareth R.; Hovanes, Katherine A.; Howard, Ava R.; Hubbard, Sierra C.; Ibarra-cerdena, Carlos N.; Iniguez-armijos, Carlos; Jara-arancio, Paola; Jarrett, Benjamin J. M.; Jeannot, Manon; Jimenez-lobato, Vania; Johnson, Mae; Johnson, Oscar; Johnson, Philip P.; Johnson, Reagan; Josephson, Matthew P.; Jung, Meen Chel; Just, Michael G.; Kahilainen, Aapo; Kailing, Otto S.; Karinho-betancourt, Eunice; Karousou, Regina; Kirn, Lauren A.; Kirschbaum, Anna; Laine, Anna-liisa; Lamontagne, Jalene M.; Lampei, Christian; Lara, Carlos; Larson, Erica L.; Lazaro-lobo, Adrian; Le, Jennifer H.; Leandro, Deleon S.; Lee, Christopher; Lei, Yunting; Leon, Carolina A.; Tamara, Manuel E. Lequerica; Levesque, Danica C.; Liao, Wan-jin; Ljubotina, Megan; Locke, Hannah; Lockett, Martin T.; Longo, Tiffany C.; Lundholm, Jeremy T.; Macgillavry, Thomas; Mackin, Christopher R.; Mahmoud, Alex R.; Manju, Isaac A.; Marien, Janine; Martinez, D. Nayeli; Martinez-bartolome, Marina; Meineke, Emily K.; Mendoza-arroyo, Wendy; Merritt, Thomas J. S.; Merritt, Lila Elizabeth L.; Migiani, Giuditta; Minor, Emily S.; Mitchell, Nora; Bazargani, Mitra Mohammadi; Moles, Angela T.; Monk, Julia D.; Moore, Christopher M.; Morales-morales, Paula A.; Moyers, Brook T.; Munoz-rojas, Miriam; Munshi-south, Jason; Murphy, Shannon M.; Murua, Maureen M.; Neila, Melisa; Nikolaidis, Ourania; Njunji, Iva; Nosko, Peter; Nunez-farfan, Juan; Ohgushi, Takayuki; Olsen, Kenneth M.; Opedal, Oystein H.; Ornelas, Cristina; Parachnowitsch, Amy L.; Paratore, Aaron S.; Parody-merino, Angela M.; Paule, Juraj; Paulo, Octavio S.; Pena, Joao Carlos; Pfeiffer, Vera W.; Pinho, Pedro; Piot, Anthony; Porth, Ilga M.; Poulos, Nicholas; Puentes, Adriana; Qu, Jiao; Quintero-vallejo, Estela; Raciti, Steve M.; Raeymaekers, Joost A. M.; Raveala, Krista M.; Rennison, Diana J.; Ribeiro, Milton C.; Richardson, Jonathan L.; Rivas-torres, Gonzalo; Rivera, Benjamin J.; Roddy, Adam B.; Rodriguez-munoz, Erika; Roman, Jose Raul; Rossi, Laura S.; Rowntree, Jennifer K.; Ryan, Travis J.; Salinas, Santiago; Sanders, Nathan J.; Santiago-rosario, Luis Y.; Savage, Amy M.; Scheepens, J. F.; Schilthuizen, Menno; Schneider, Adam C.; Scholier, Tiffany; Scott, Jared L.; Shaheed, Summer A.; Shefferson, Richard P.; Shepard, Caralee A.; Shykoff, Jacqui A.; Silveira, Georgianna; Smith, Alexis D.; Solis-gabriel, Lizet; Soro, Antonella; Spellman, Katie, V; Whitney, Kaitlin Stack; Starke-ottich, Indra; Stephan, Jorg G.; Stephens, Jessica D.; Szulc, Justyna; Szulkin, Marta; Tack, Ayco J. M.; Tamburrino, Italo; Tate, Tayler D.; Tergemina, Emmanuel; Theodorou, Panagiotis; Thompson, Ken A.; Threlfall, Caragh G.; Tinghitella, Robin M.; Toledo-chelala, Lilibeth; Tong, Xin; Uroy, Lea; Utsumi, Shunsuke; Vandegehuchte, Martijn L.; Vanwallendael, Acer; Vidal, Paula M.; Wadgymar, Susana M.; Wang, Ai-ying; Wang, Nian; Warbrick, Montana L.; Whitney, Kenneth D.; Wiesmeier, Miriam; Wiles, J. Tristian; Wu, Jianqiang; Xirocostas, Zoe A.; Yan, Zhaogui; Yao, Jiahe; Yoder, Jeremy B.; Yoshida, Owen; Zhang, Jingxiong; Zhao, Zhigang; Ziter, Carly D.; Zuellig, Matthew P.; Zufall, Rebecca A.; Zurita, Juan E.; Zytynska, Sharon E.; Johnson, Marc T. J. (2022). Global Urban Environmental Change Drives Adaptation in White Clover. Science, 375(6586), 1275+.

View Publication

Abstract

Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural dines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale.

Keywords

Surface Temperature Retrieval; Cyanogenesis Clines; Hydrogen-cyanide; Gene Flow; F-st; Evolution; Polymorphism; Emissivity; Discovery; Framework; Drought; Urban Environments; Urbanization; Environmental Changes; Herbivory; Urban Development; Adaptation; Chemical Defense; Urban Areas; Data Collection; Trifolium Repens

Carbon Consequences of Land Cover Change and Expansion of Urban Lands: A Case Study in the Seattle Metropolitan Region

Hutyra, Lucy R.; Yoon, Byungman; Hepinstall-Cymerman, Jeffrey; Alberti, Marina. (2011). Carbon Consequences of Land Cover Change and Expansion of Urban Lands: A Case Study in the Seattle Metropolitan Region. Landscape And Urban Planning, 103(1), 83 – 93.

View Publication

Abstract

Understanding the role humans play in modifying ecosystems through changing land cover is central to addressing our current and emerging environmental challenges. In particular, the consequences of urban growth and land cover change on terrestrial carbon budgets is a growing issue for our rapidly urbanizing planet. Using the lowland Seattle Statistical Metropolitan Area (MSA) region as a case study, this paper explores the consequences of the past land cover changes on vegetative carbon stocks with a combination of direct field measurements and a time series of remote sensing data. Between 1986 and 2007, the amount of urban land cover within the lowland Seattle MSA more than doubled, from 1316 km(2) to 2798 km(2), respectively. Virtually all of the urban expansion was at the expense of forests with the forested area declining from 4472 km(2) in 1986 to 2878 km(2) in 2007. The annual mean rate of urban land cover expansion was 1 +/- 0.6% year(-1). We estimate that the impact of these regional land cover changes on aboveground carbon stocks was an average loss of 1.2 Mg C ha(-1) yr(-1) in vegetative carbon stocks. These carbon losses from urban expansion correspond to nearly 15% of the lowland regional fossil fuel emissions making it an important, albeit typically overlooked, term in regional carbon emissions budgets. As we plan for future urban growth and strive for more ecologically sustainable cities, it is critical that we understand the past patterns and consequences of urban development to inform future land development and conservation strategies. (C) 2011 Elsevier B.V. All rights reserved.

Keywords

Sprawl; Growth; Carbon Cycle; Emissions; Land Cover; Urbanization; Seattle; Vegetation; Carbon; Carbon Sinks; Case Studies; Cities; Ecosystems; Forests; Fossil Fuels; Humans; Land Use; Planning; Remote Sensing; Time Series Analysis

Global Urban Signatures of Phenotypic Change in Animal and Plant Populations

Alberti, Marina; Correa, Cristian; Marzluff, John M.; Hendry, Andrew P.; Palkovacs, Eric P.; Gotanda, Kiyoko M.; Hunt, Victoria M.; Apgar, Travis M.; Zhou, Yuyu. (2017). Global Urban Signatures of Phenotypic Change in Animal and Plant Populations. Proceedings Of The National Academy Of Sciences Of The United States Of America, 114(34), 8951 – 8956.

View Publication

Abstract

Humans challenge the phenotypic, genetic, and cultural makeup of species by affecting the fitness landscapes on which they evolve. Recent studies show that cities might play a major role in contemporary evolution by accelerating phenotypic changes in wildlife, including animals, plants, fungi, and other organisms. Many studies of ecoevolutionary change have focused on anthropogenic drivers, but none of these studies has specifically examined the role that urbanization plays in ecoevolution or explicitly examined its mechanisms. This paper presents evidence on the mechanisms linking urban development patterns to rapid evolutionary changes for species that play important functional roles in communities and ecosystems. Through a metaanalysis of experimental and observational studies reporting more than 1,600 phenotypic changes in species across multiple regions, we ask whether we can discriminate an urban signature of phenotypic change beyond the established natural baselines and other anthropogenic signals. We then assess the relative impact of five types of urban disturbances including habitat modifications, biotic interactions, habitat heterogeneity, novel disturbances, and social interactions. Our study shows a clear urban signal; rates of phenotypic change are greater in urbanizing systems compared with natural and nonurban anthropogenic systems. By explicitly linking urban development to traits that affect ecosystem function, we can map potential ecoevolutionary implications of emerging patterns of urban agglomerations and uncover insights for maintaining key ecosystem functions upon which the sustainability of human wellbeing depends.

Keywords

Phenotypes; Plant Populations; Animal Populations; Biological Evolution; Ecosystems; Urbanization; Sustainability; Anthropocene; Ecoevolution; Ecosystem Function; Modern Life; Evolutionary; Patterns; Ecology; Rates; Disturbance; Dynamics; Traits; Pace; Studies; Genotype & Phenotype; Sustainable Development; Anthropogenic Factors; Fitness; Human Influences; Urban Areas; Urban Development; Species; Disturbances; Wildlife; Fungi; Wildlife Habitats; Social Interactions; Social Factors; Plants (botany); Landscape

Cohort Profile: Twins Study of Environment, Lifestyle Behaviours and Health

Duncan, Glen E.; Avery, Ally; Hurvitz, Philip M.; Moudon, Anne Vernez; Tsang, Siny; Turkheimer, Eric. (2019). Cohort Profile: Twins Study of Environment, Lifestyle Behaviours and Health. International Journal Of Epidemiology, 48(4), 1041.

View Publication

Keywords

Twin Studies; Neighborhoods; Native Americans; Normalized Difference Vegetation Index; Life Style; Twins; Body-mass Index; Physical-activity; Neighborhood Walkability; Waist Circumference; Built Environment; Causal Inference; Deprivation; Validation; Registry; Obesity

Residential Building Lifespan and Community Turnover

Ianchenko, Alex; Simonen, Kathrina; Barnes, Clayton. (2020). Residential Building Lifespan and Community Turnover. Journal Of Architectural Engineering, 26(3).

View Publication

Abstract

Environmental impact studies within the built environment rely on predicting building lifespan to describe the period of occupation and operation. Most life cycle assessments (LCAs) are based on arbitrary lifespan values, omitting the uncertainties of assessing service life. This research models the lifespan of American residential housing stock as a probabilistic survival distribution based on available data from the American Housing Survey (AHS). The log-normal, gamma, and Weibull distributions were fit to demolition data from 1985 to 2009 and these three models were compared with one another using the Bayesian information criterion. Analysis revealed that the estimated average housing lifespan in the United States is 130 years given model assumptions, although a probabilistic approach to lifespan can yield higher accuracy on a case-by-case basis. Parameters for modeling housing lifespan as log-normal, gamma, and Weibull survival functions are published with the intent of further application in LCA. The application of probabilistic housing lifespan models to community-wide turnover and integration with existing simulations of natural disaster are proposed as potential ways to achieve community sustainability and resilience goals. (c) 2020 American Society of Civil Engineers.

Keywords

Energy-consumption; Service Life; Cycle; Demolition; Emissions; Design; Impact; Model; Housing Stock Lifetime; Residential Buildings; Housing Turnover; Life Cycle Assessment; Service Life Prediction