Tobey, Michael B.; Binder, Robert B.; Chang, Soowon; Yoshida, Takahiro; Yamagata, Yoshiki; Yang, Perry P. J. (2019). Urban Systems Design: A Conceptual Framework for Planning Smart Communities. Smart Cities, 2(4), 522 – 537.
View Publication
Abstract
Urban systems design arises from disparate current planning approaches (urban design, Planning Support Systems, and community engagement), compounded by the reemergence of rational planning methods from new technology (Internet of Things (IoT), metric based analysis, and big data). The proposed methods join social considerations (Human Well-Being), environmental needs (Sustainability), climate change and disaster mitigation (Resilience), and prosperity (Economics) as the four foundational pillars. Urban systems design integrates planning methodologies to systematically tackle urban challenges, using IoT and rational methods, while human beings form the core of all analysis and objectives. Our approach utilizes an iterative three-phase development loop to contextualize, evaluate, plan and design scenarios for the specific needs of communities. An equal emphasis is placed on feedback loops through analysis and design, to achieve the end goal of building smart communities.
Keywords
Urban Design; Planning Support System; Resilience; Sustainability; Economics; Human Factors; Big Data
Lin, Brenda B.; Ossola, Alessandro; Alberti, Marina; Andersson, Erik; Bai, Xuemei; Dobbs, Cynnamon; Elmqvist, Thomas; Evans, Karl L.; Frantzeskaki, Niki; Fuller, Richard A.; Gaston, Kevin J.; Haase, Dagmar; Jim, Chi Yung; Konijnendijk, Cecil; Nagendra, Harini; Niemela, Jari; Mcphearson, Timon; Moomaw, William R.; Parnell, Susan; Pataki, Diane; Ripple, William J.; Tan, Puay Yok. (2021). Integrating Solutions to Adapt Cities for Climate Change. Lancet Planetary Health, 5(7), E479 – E486.
View Publication
Abstract
Record climate extremes are reducing urban liveability, compounding inequality, and threatening infrastructure. Adaptation measures that integrate technological, nature-based, and social solutions can provide multiple co-benefits to address complex socioecological issues in cities while increasing resilience to potential impacts. However, there remain many challenges to developing and implementing integrated solutions. In this Viewpoint, we consider the value of integrating across the three solution sets, the challenges and potential enablers for integrating solution sets, and present examples of challenges and adopted solutions in three cities with different urban contexts and climates (Freiburg, Germany; Durban, South Africa; and Singapore). We conclude with a discussion of research directions and provide a road map to identify the actions that enable successful implementation of integrated climate solutions. We highlight the need for more systematic research that targets enabling environments for integration; achieving integrated solutions in different contexts to avoid maladaptation; simultaneously improving liveability, sustainability, and equality; and replicating via transfer and scale-up of local solutions. Cities in systematically disadvantaged countries (sometimes referred to as the Global South) are central to future urban development and must be prioritised. Helping decision makers and communities understand the potential opportunities associated with integrated solutions for climate change will encourage urgent and deliberate strides towards adapting cities to the dynamic climate reality.
Keywords
Urban; Resilience; Energy; Water; Transformations; Sustainability; Opportunities; Challenges; Mitigation; Knowledge
Yocom, Ken. (2014). Building Watershed Narratives: An Approach for Broadening the Scope of Success in Urban Stream Restoration. Landscape Research, 39(6), 698 – 714.
View Publication
Abstract
The success of urban stream restoration is often measured through biophysical attributes, or the progress towards restoration of a notionally intact section of landscape. What remains understudied is how success can be defined across social, economic, as well as ecological parameters. This research offers a narrative approach for urban restoration research that serves as a chronotope for untangling the biophysical and sociocultural complexities of the contemporary urban environment. The framework of this approach is presented through a case study of a recent stream restoration project in Seattle, Washington. The findings highlight the need for urban stream restoration processes to be grounded within a sociocultural context that is interdependent with biophysical conditions, and recommends measures of project success to include community, educational and participatory goals.
Keywords
River Restoration; Landscape; Management; Catchment; Systems; History; People; Restoration; Success; Watershed; Narrative; Urban
Korn, Abigail; Bolton, Susan M.; Spencer, Benjamin; Alarcon, Jorge A.; Andrews, Leann; Voss, Joachim G. (2018). Physical and Mental Health Impacts of Household Gardens in an Urban Slum in Lima, Peru. International Journal Of Environmental Research And Public Health, 15(8).
View Publication
Abstract
Rural poverty and lack of access to education has led to urban migration and fed the constant growth of urban slums in Lima, Peru. Inhabitants of these informal settlements lack land rights and access to a public water supply, resulting in poor sanitation, an inability to grow food, and suboptimal health outcomes. A repeated measures longitudinal pilot study utilizing participatory design methods was conducted in Lima between September 2013 and September 2014 to determine the feasibility of implementing household gardens and the subsequent impact of increased green space on well-being. Anthropometric data and a composite of five validated mental health surveys were collected at the baseline, 6-months, and 12-months after garden construction. Significant increases from the baseline in all domains of quality of life, including: physical (p < 0.01), psychological (p = 0.05), social (p = 0.02), environmental (p = 0.02), and overall social capital (p < 0.01) were identified 12 months after garden construction. Life-threatening experiences decreased significantly compared to the baseline (p = 0.02). There were no significant changes in parent or partner empathy (p = 0.21), BMI (p = 0.95), waist circumference (p = 0.18), or blood pressure (p = 0.66) at 6 or 12 months. Improved access to green space in the form of a household garden can significantly improve mental health in an urban slum setting.
Keywords
Of-life Assessment; Psychometric Properties; Threatening Experiences; Vegetable Consumption; Developing-countries; Community Garden; Climate-change; Green Space; Poverty; Participation; Mental Health; Peru; Quality Of Life; Urban Slum; Social Capital
Tobey, Michael B.; Binder, Robert B.; Yoshida, Takahiro; Yamagata, Yoshiki. (2019). Urban Systems Design Case Study: Tokyo’s Sumida Ward. Smart Cities, 2(4), 453 – 470.
View Publication
Abstract
Meeting the needs of increasing environmental and systematic pressures in urban settlements requires the use of integrated and wholistic approaches. The Urban Systems Design (USD) Conceptual Framework joins the metric-based modeling of rationalized methods with human-driven goals to form a combined iterative design and analysis loop. The framework processes information for the fundamental element of cities-humans-to large-scale modeling and decision-making occurring in district- and ward-level planning. There is a need in the planning and design profession to better integrate these efforts at a greater scale to create smart communities that are inclusive and comprehensive in aspects from data management to energy and transportation networks. The purpose of this study is to examine the applicability of this method as it pertains to a model and design integrated approach. Northern Sumida Ward, located in Tokyo, exemplifies the contextualized needs of Tokyo, and Japan, while forming a coherent internal community. Focusing on methodology, our process explores the creation of typologies, metric-based analysis, and design-based approaches that are integrated into modeling. The results of the analyses provide initial evidence regarding the validity of the USD approach in modeling changes to complex systems at differing design scales, connecting various qualities of the built environment, building and urban forms, and diagnostic comparisons between baseline and change conditions. Because of some inconsistencies and the need for further evidence gathering, the methods and processes show that there is much work to be done to strengthen the model and to continue building a more productive field of USD. However, in this framework's continuing evolution, there is increasing evidence that combining the planning and design of urban systems creates a more resilient, economically viable, sustainable, and comfortable city.
Keywords
Urban Planning; Resilience; Sustainability; Economics; Human Factors; Tokyo; Planning Support System; Gis
Pataki, Diane E.; Alberti, Marina; Cadenasso, Mary L.; Felson, Alexander J.; McDonnell, Mark J.; Pincetl, Stephanie; Pouyat, Richard V.; Setala, Heikki; Whitlow, Thomas H. (2021). The Benefits and Limits of Urban Tree Planting for Environmental and Human Health. Frontiers In Ecology And Evolution, 9.
View Publication
Abstract
Many of the world's major cities have implemented tree planting programs based on assumed environmental and social benefits of urban forests. Recent studies have increasingly tested these assumptions and provide empirical evidence for the contributions of tree planting programs, as well as their feasibility and limits, for solving or mitigating urban environmental and social issues. We propose that current evidence supports local cooling, stormwater absorption, and health benefits of urban trees for local residents. However, the potential for urban trees to appreciably mitigate greenhouse gas emissions and air pollution over a wide array of sites and environmental conditions is limited. Consequently, urban trees appear to be more promising for climate and pollution adaptation strategies than mitigation strategies. In large part, this is due to space constraints limiting the extent of urban tree canopies relative to the current magnitude of emissions. The most promising environmental and health impacts of urban trees are those that can be realized with well-stewarded tree planting and localized design interventions at site to municipal scales. Tree planting at these scales has documented benefits on local climate and health, which can be maximized through targeted site design followed by monitoring, adaptive management, and studies of long-term eco-evolutionary dynamics.
Keywords
Outdoor Thermal Comfort; Improved Public-health; Carbon Storage; Ecosystem Services; Air-quality; Rainfall Interception; Vegetation; Cover; Design; Impact; Urban Ecology; Forestry; Sustainability; Policy; Climate Mitigation; Climate Adaptation; Ecosystem Disservices
Alberti, Marina. (2015). Eco-Evolutionary Dynamics in an Urbanizing Planet. Trends In Ecology & Evolution, 30(2), 114 – 126.
View Publication
Abstract
A great challenge for ecology in the coming decades is to understand the role humans play in eco-evolutionary dynamics. If, as emerging evidence shows, rapid evolutionary change affects ecosystem functioning and stability, current rapid environmental change and its evolutionary effects might have significant implications for ecological and human wellbeing on a relatively short time scale. Humans are major selective agents with potential for unprecedented evolutionary consequences for Earth's ecosystems, especially as cities expand rapidly. In this review, I identify emerging hypotheses on how urbanization drives eco-evolutionary dynamics. Studying how human-driven micro-evolutionary changes interact with ecological processes offers us the chance to advance our understanding of eco-evolutionary feedbacks and will provide new insights for maintaining biodiversity and ecosystem function over the long term.
Keywords
Biological Evolution; Urbanization; Climate Change; Ecosystems; Well-being; Co-evolution; Eco-evolutionary Dynamics; Ecosystem Function; Urban Ecosystems; Ecological Consequences; Phenotypic Plasticity; Rapid Evolution; Regime Shifts; Elevated Co2; Biodiversity; Selection; Community; Patterns
Simonen, K.; Huang, M.; Aicher, C.; Morris, P. (2018). Embodied Carbon as a Proxy for the Environmental Impact of Earthquake Damage Repair. Energy And Buildings, 164, 131 – 139.
View Publication
Abstract
In evaluating the life cycle environmental impacts of buildings, the contributions of seismic damage are rarely considered. In order to enable a more comprehensive assessment of a building's environmental impact by accounting for seismic events, this project developed an environmental impact database of building component seismic damage - the largest of its kind known to date - by combining data from Carnegie Mellon University's Economic Input-Output Life Cycle Analysis (LCA) database with cost estimates of repair previously developed for FEMA's Performance Assessment Calculation Tool (PACT), a software that models probabilistic seismic damage in buildings. Fifteen indicators of environmental impacts were calculated for the repair of approximately 800 building components for up to five levels of seismic damage, capturing 'embodied' impacts related to cradle-to-gate manufacturing of building materials, products, and equipment. Analysis of the data revealed that non-structural and architectural finishes often dominated the environmental impacts of seismic damage per dollar spent in repair. A statistical analysis was performed on the data using Principal Component Analysis, confirming that embodied carbon, a popular metric for evaluating environmental impacts in building LCAs, is a suitable proxy for other relevant environmental impact metrics when assessing the impact of repairing earthquake damage of buildings. (C) 2018 Elsevier B.V. All rights reserved.
Keywords
Life-cycle Assessment; Input-output; Buildings; Life Cycle Assessment; Seismic Analysis; Performance-based Design; Economic Input-output; Principal Component Analysis; Energy And Climate Change; Architectural Engineering; Carbon; Carbon Cycle; Earthquake Damage; Earthquakes; Environmental Impact; Environmental Management; Databases; Finishes; Environmental Assessment; Building Components; Construction Materials; Life Cycle Engineering; Life Cycle Analysis; Data Bases; Damage Assessment; Aseismic Buildings; Statistical Analysis; Equipment Costs; Cost Estimates; Data Processing; Data Analysis; Seismic Activity; Cost Analysis; Principal Components Analysis; Performance Assessment; Life Cycles; Repair; Impact Damage; Building Materials; Economic Analysis; Software
Wang, Kaiwen; Liu, Xiaomang; Liu, Changming; Yang, Xiaohua; Bai, Peng; Li, Yuqi; Pan, Zharong. (2019). The Unignorable Impacts of Pan Wall on Pan Evaporation Dynamics. Agricultural & Forest Meteorology, 274, 42 – 50.
View Publication
Abstract
Open water evaporation (E-ow), such as evaporation of lake and reservoir, is typically estimated by observations of different pans. The observation networks of pan evaporation (E-pan) were established and maintained worldwide for a long history. All the pans in the world consist of water body and pan wall, which includes side wall, pan rim and (if any) pan bottom. Since the pan wall will affect E-pan by radiation absorption and heat conduction, once pan wall absorbs and conducts more heat for vaporizing than water body in a pan, observed E-pan dynamics will greatly deviate E-ow causing uncertainties and errors in estimating E-ow. Thus, this study calculated E-pan at 767 meteorological stations in China and quantified the contributions of water body and pan wall on E-pan trends. For China as a whole, E-pan decreased at -3.75 mm/a(2) and increased at 3.68 mm/a(2) during 1960-1993 and 1993-2016, respectively. 84% of E-pan trends were contributed by water body. For 767 stations, E-pan trends of 84 and 96 stations were dominated by pan wall during 1960-1993 and 1993-2016, respectively. Since pan wall contributed more than half of E-pan trends for (similar to)23% of the stations in China, the impacts of pan wall on E-pan dynamics cannot be ignored.
Keywords
Heat Radiation & Absorption; Heat Conduction; Meteorological Stations; Bodies Of Water; Dynamics; Water Diversion; China; Pan Evaporation Dynamics; Pan Wall; Radiation Absorption And Heat Conduction; Trends; Sensitivity; Demand; Model; Absorption; Evaporation; Heat Transfer; Lakes; Surface Water; Uncertainty
Savitch, Ethan; Frank, Adam; Carroll-Nellenback, Jonathan; Haqq-Misra, Jacob; Kleidon, Axel; Alberti, Marina. (2021). Triggering a Climate Change Dominated Anthropocene: Is it Common Among Exocivilizations? Astronomical Journal, 162(5).
View Publication
Abstract
We seek to model the coupled evolution of a civilization and its host planet through the era when energy harvesting by the civilization drives the planet into new and adverse climate states. In this way, we ask if triggering Anthropocenes of the kind humanity is experiencing might be a generic feature of planet-civilization evolution. This question has direct consequences for both the study of astrobiology and the sustainability of human civilization. Furthermore, if Anthropocenes prove fatal for some civilizations then they can be considered as one form of a Great Filter and are therefore relevant to discussions of the Fermi Paradox. In this study, we focus on the effects of energy harvesting via combustion and vary the planet's initial chemistry and orbital radius. We find that in this context, the most influential parameter dictating a civilization's fate is their host planet's climate sensitivity, which quantifies how global temperatures change as CO2 is added to the atmosphere. Furthermore, this is in itself a function of the planet's atmospheric CO2 level, so planets with low levels of CO2 will have high climate sensitivities and high probabilities of triggering climate change. Using simulations of the coupled nonlinear model combined with semi-analytic treatments, we find that most planets in our initial parameter space experience diminished growth due to climate effects, an event we call a climate-dominated Anthropocene.
Keywords
Habitable Planets; Complex Life; Evolution; Earth