Skip to content

The Association between Park Facilities and Duration of Physical Activity During Active Park Visits

Stewart, Orion T.; Moudon, Anne Vernez; Littman, Alyson J.; Seto, Edmund; Saelens, Brian E. (2018). The Association between Park Facilities and Duration of Physical Activity During Active Park Visits. Journal Of Urban Health, 95(6), 869 – 880.

View Publication

Abstract

Public parks provide places for urban residents to obtain physical activity (PA), which is associated with numerous health benefits. Adding facilities to existing parks could be a cost-effective approach to increase the duration of PA that occurs during park visits. Using objectively measured PA and comprehensively measured park visit data among an urban community-dwelling sample of adults, we tested the association between the variety of park facilities that directly support PA and the duration of PA during park visits where any PA occurred. Cross-classified multilevel models were used to account for the clustering of park visits (n=1553) within individuals (n=372) and parks (n=233). Each additional different PA facility at a park was independently associated with a 6.8% longer duration of PA bouts that included light-intensity activity, and an 8.7% longer duration of moderate to vigorous PA time. Findings from this study are consistent with the hypothesis that more PA facilities increase the amount of PA that visitors obtain while already active at a park.

Keywords

Park Facilities; Physical Activity; Park Use; Recreation; Built Environment; Global Positioning System; Accelerometer; Gis; Gps; Accelerometer Data; United-states; Adults; Proximity; Features; Walking; Size; Attractiveness; Improvements; Environment; Parks & Recreation Areas; Parks; Luminous Intensity; Clustering; Urban Areas

Pan Coefficient Sensitivity to Environment Variables across China

Wang, Kaiwen; Liu, Xiaomang; Tian, Wei; Li, Yanzhong; Liang, Kang; Liu, Changming; Li, Yuqi; Yang, Xiaohua. (2019). Pan Coefficient Sensitivity to Environment Variables across China. Journal Of Hydrology, 572, 582 – 591.

View Publication

Abstract

Data of open water evaporation (E-ow), such as evaporation of lake and reservoir, have been widely used in hydraulic and hydrological engineering projects, and water resources planning and management in agriculture, forestry and ecology. Because of the low-cost and maneuverability, measuring the evaporation of a pan has been widely regarded as a reliable approach to estimate E-ow through multiplying an appropriate pan coefficient (K-p). K-p is affected by geometry and materials of a pan, and complex surrounding environment variables. However, the relationship between K-p and different environment variables is unknown. Thus, this study chose China D20 pan as an example, used meteorological observations from 767 stations and introduced the latest PenPan model to analyze the sensitivity of K-p to different environment variables. The results show that, the distribution of annual K-p had a strong spatial gradient. For all the stations, annual K-p ranged from 0.31 to 0.89, and decreased gradually from southeast to northwest. The sensitivity analysis shows that for China as a whole, K-p was most sensitive to relative humidity, followed by air temperature, wind speed and sunshine duration. For 767 stations in China, K-p was most sensitive to relative humidity for almost all the stations. For stations north of Yellow River, wind speed and sunshine duration were the next sensitive variables; while for stations south of Yellow River, air temperature was the next sensitive variable. The method introduced in this study could benefit estimating and predicting K-p under future changing environment.

Keywords

Atmospheric Temperature; Hydraulic Engineering; Meteorological Observations; Humidity; Water Supply; Evaporation (meteorology); Sunshine; Lake Management; China; Kp Most Sensitive To Relative Humidity; Open Water Evaporation; Pan Coefficient (kp); Pan Evaporation; Sensitivity Analysis; Reference Evapotranspiration; Reference Crop; Evaporation; Water; Model; Pan Coefficient (k-p); K-p Most Sensitive To Relative Humidity; Air Temperature; Ecology; Forestry; Geometry; Hydrologic Engineering; Lakes; Maneuverability; Meteorological Data; Models; Planning; Prediction; Relative Humidity; Solar Radiation; Wind Speed; Yellow River

Dynamic Life Cycle Assessment: A Review of Research for Temporal Variations in Life Cycle Assessment Studies

Su, Shu; Li, Xiaodong; Zhu, Chen; Lu, Yujie; Lee, Hyun Woo. (2021). Dynamic Life Cycle Assessment: A Review of Research for Temporal Variations in Life Cycle Assessment Studies. Environmental Engineering Science, 38(11), 1013 – 1026.

View Publication

Abstract

Life cycle assessment (LCA) is a comprehensive and important environmental management tool around the world. However, lacking temporal information has been a major challenge. In the past decade, dynamic LCA (DLCA), which incorporates temporal variations into assessment, has been an emerging research topic with increasing publications. A timely comprehensive review is needed to present current progress and discuss future directions. This article reviews 144 DLCA articles quantitatively and qualitatively. A bibliometric approach is adopted to conduct co-occurrence analysis and cluster analysis of DLCA studies. The research progress, approaches, and limitations of three temporal variation types (i.e., dynamic life cycle inventory, dynamic characterization factors, and dynamic weighting factors) in DLCA studies are systematically analyzed and discussed. It is concluded that: (1) dynamic inventory analysis is usually conducted by collecting time-differentiated data at each time step. Field monitoring, simulation, scenario analysis, and prediction based on historical data are common approaches. (2) Dynamic characterization studies primarily focus on two impact categories: global warming and toxicity. More studies are in need. (3) Various methods and indicators (i.e., dynamic pollution damage cost, temporal environmental policy targets, and discount rates) are used to solve the dynamic weighting issue, and they have specific limitations. Finally, three interesting topics are discussed: comparison between dynamic and static results, the large data amount issue, and the trend of tools development. This review offers a holistic view on temporal variations in DLCA studies and provides reference and directions for future dynamic studies.

Keywords

Literature Reviews; Cluster Analysis (statistics); Global Warming; Environmental Management; Discount Prices; Emission Inventories; Dynamic Characterization; Dynamic Inventory Analysis; Dynamic Weighting; Environmental Impact; Life Cycle Assessment; Temporal Variation; Cluster Analysis; Life Cycle; 'current; Dynamic Inventory Analyse; Dynamic Lca; Environmental Management Tool; Inventory Analysis; Research Topics; Temporal Information; Dependent Climate Impact; Greenhouse-gas Emission; Biogenic Carbon; Assessment Framework; Fresh-water; Electricity-generation; Energy Efficiency; Wheat Production; Embodied Energy; Time

Statistical Analysis of Embodied Carbon Emission for Building Construction

Kang, Goune; Kim, Taehoon; Kim, Yong-woo; Cho, Hunhee; Kang, Kyung-in. (2015). Statistical Analysis of Embodied Carbon Emission for Building Construction. Energy And Buildings, 105, 326 – 333.

View Publication

Abstract

Buildings are significant contributors to the greenhouse effect through emission of considerable carbon dioxide during their life cycle. Life cycle carbon resulting from buildings consists of two components: operational carbon (OC) and embodied carbon (EC). Recent studies have shown the growing significance of EC because much effort has already been invested into reducing OC. In this context, it is important to estimate and reduce EC. Because of the variability and uncertainty contained in a range of conditions, the EC of building needs to be calculated based on probabilistic analysis. This study identifies and analyzes the statistical characteristics of EC emitted from building construction materials. It was aimed at buildings constructed of reinforced concrete and nine representative construction materials. Descriptive statistics analysis, correlation analysis, and a goodness-of-fit test were performed to describe the statistical characteristics of EC. In addition, a case study was carried out to show the difference between the deterministic and probabilistic estimations. Presenting statistical information on EC data and the differences between the deterministic and probabilistic values, the result shows the necessity and reasonability of the probabilistic method for EC estimation. (C) 2015 Published by Elsevier B.V.

Keywords

Construction; Construction Materials; Greenhouse Gases; Probability Theory; Goodness-of-fit Tests; Quantitative Research; Building Materials; Correlation; Descriptive Statistics; Embodied Carbon; Goodness-of-fit; Buildings (structures); Reinforced Concrete; Statistical Analysis; Embodied Carbon Emission; Greenhouse Effect; Carbon Dioxide; Life Cycle Carbon; Operational Carbon; Oc; Probabilistic Analysis; Building Construction Materials; Statistics Analysis; Correlation Analysis; Probabilistic Estimations; Statistical Information; Ec Data; Probabilistic Method; Ec Estimation; Life-cycle; Energy Measurement; System Boundary

Why Neighborhood Park Proximity Is Not Associated with Total Physical Activity

Stewart, Orion T.; Moudon, Anne Vernez; Littman, Alyson J.; Seto, Edmund; Saelens, Brian E. (2018). Why Neighborhood Park Proximity Is Not Associated with Total Physical Activity. Health & Place, 52, 163 – 169.

View Publication

Abstract

This study explored how parks within the home neighborhood contribute to total physical activity (PA) by isolating park-related PA. Seattle-area adults (n = 634) were observed using time-matched accelerometer, Global Positioning System (GPS), and travel diary instruments. Of the average 42.3 min of daily total PA, only 11% was related to parks. Both home neighborhood park count and area were associated with park-based PA, but not with PA that occurred elsewhere, which comprised 89% of total PA. This study demonstrates clear benefits of neighborhood parks for contributing to park-based PA while helping explain why proximity to parks is rarely associated with overall PA.

Keywords

Physical Activity; Parks; Urban Planning; Environmental Health; Global Positioning System; Built Environment; Green Space; Recreation; Social Determinants Of Health; Health Research; Accelerometer Data; Self-selection; United-states; Public Parks; Older Women; Walking; Adults; Facilities

Ancient and Current Resilience in the Chengdu Plain: Agropolitan Development Re-‘Revisited’

Abramson, Daniel B. (2020). Ancient and Current Resilience in the Chengdu Plain: Agropolitan Development Re-‘Revisited’. Urban Studies (sage Publications, Ltd.), 57(7), 1372 – 1397.

View Publication

Abstract

The Dujiangyan irrigation system, China's largest, is one of the world's most important examples of sustainable agropolitan development, maintained by a relatively decentralised system of governance that minimises bureaucratic oversight and depends on significant local autonomy at many scales down to the household. At its historic core in the Chengdu Plain, the system has supported over 2000 years of near-continuously stable urban culture, as well as some of the world's highest sustained long-term per-hectare productivity and diversity of grain and other crops, especially considering its high population density, forest cover, general biodiversity and flood management success. During the past decade, rapid urban expansion has turned the Chengdu Plain from a net grain exporter into a grain importer, and has radically transformed its productive functioning and distinctive scattered settlement pattern, reorganising much of the landscape into larger, corporately-managed farms, and more concentrated and infrastructure-intensive settlements of non-farming as well as farming households. Community-scale case studies of spatial-morphological and household socio-economic variants on the regional trend help to articulate what is at stake. Neither market-driven 'laissez-faire' rural development nor local state-driven spatial settlement consolidation and corporatisation of production seem to correlate well with important factors of resilience: landscape heterogeneity; crop diversity and food production; permaculture; and flexibility in household independence and choice of livelihood. Management of the irrigation system should be linked to community-based agricultural landscape preservation and productive dwelling, as sources of adaptive capacity crucial to the social-ecological resilience of the city-region, the nation and perhaps all humanity.

Keywords

Urbanization; Economies Of Agglomeration; Agricultural Ecology; Sustainability; Urban Planning; Land Use; China; Agglomeration/urbanisation; Agroecosystems; Environment/sustainability; History/heritage/memory; Redevelopment/regeneration; Cultivated Land; Countryside; Expansion; State; Rise; Modernization; Conservation; Integration; Earthquake; Agglomeration; Urbanisation; Environment; History; Heritage; Memory; Redevelopment; Regeneration; Population Density; Production; Farming; Agriculture; Decentralization; Autonomy; Food Production; Households; Landscape; Resilience; Rural Development; Food; Farms; Regional Development; Productivity; Economic Development; Case Studies; Agricultural Production; Biodiversity; Sustainable Development; Governance; Preservation; Crops; Flood Management; Irrigation; Permaculture; Radicalism; Socioeconomic Factors; Grain; Flexibility; Heterogeneity; Variants; Urban Areas; Irrigation Systems; Rural Communities; Bureaucracy; Landscape Preservation; Agricultural Land; Flood Control; Density; Infrastructure; Urban Sprawl; Livelihood; Farm Management; Rural Areas; Urban Farming; Settlement Patterns; Agribusiness; Market Economies

Transitions In Urban Waterfronts: Imagining, Contesting, And Sustaining The Aquatic/terrestrial Interface

Taufen, Anne; Yocom, Ken. (2021). Transitions In Urban Waterfronts: Imagining, Contesting, And Sustaining The Aquatic/terrestrial Interface. Sustainability, 13(1).

View Publication

Abstract

Urban waterfronts represent hybrid locations of ecological, economic, and social zones of transition and dispersal, spatially reified between land and water. Yet, through advancements in technology and the emergence of globally linked economies, the structure and function of urban waterfronts as economic and industrial drivers is becoming increasingly complex. As cities seek to redevelop their waterfronts in response to these changes, recent research and scholarship has focused on understanding the ecological, social, and economic benefits derived from urban waterfronts. This research reveals that their benefits are unevenly distributed among local and regional populations as sites of accumulated inequity and inaccessibility that are generative for only a relatively small percentage of the people living in a metropolitan area. Set within this paradoxical nexus, this paper frames a call to scientists, planners, academics, and waterfront activists to expand urban waterfront research from an indicator and benefits model to incorporate three conceptual tools for better understanding key dimensions of waterfront reclamation within the context of green infrastructure research: urban hybridity, functional performance and hierarchies of access. We explore these key dimensions in relation to the waterfront redevelopment of Tacoma, Washington, USA. By acknowledging the hybridity of urban waterfronts, we illustrate that their relative performance and accessibility require ongoing empirical study and practical intervention. Our theoretical explorations plot some of the potential areas of investigation for examining the structural and functional transitions of urban waterfronts as critical locations for green infrastructure development for the 21st century.

Keywords

Place Attachment; Community Participation; Cities; Justice; Indicators; Challenges; Resilience; Governance; Space; Urban Waterfronts; Complexity; Urban Hybridity; Functional Performance; Hierarchies Of Access; Public Access; Stormwater Management; Infrastructure; Reclamation; Green Aspects; Waterfront Development; Urban Areas; Terrestrial Environments; Waterfronts; Economics; Hierarchies; Redevelopment; Regulation; Dispersal; Economic Activity; Shorelines; Regions; Terrestrial Ecosystems; Sustainable Development; Structure-function Relationships; Ports; Rivers; Metropolitan Areas; Urbanization; United States--us

Measuring Neighbourhood Air Pollution: The Case of Seattle’s International District.

Bassok, Alon; Hurvitz, Phil M.; Bae, C-H. Christine; Larson, Timothy. (2010). Measuring Neighbourhood Air Pollution: The Case of Seattle’s International District. Journal Of Environmental Planning & Management, 53(1), 23 – 39.

View Publication

Abstract

Current US regulatory air quality monitoring networks measure ambient levels of pollutants and cannot capture the effects of mobile sources at the micro-scale. Despite the fact that overall air quality has been getting better, more vulnerable populations (children, the elderly, minorities and the poor) continue to suffer from traffic-related air pollution. As development intensifies in urban areas, more people are exposed to road-related air pollution. However, the only consideration given to air quality, if any, is based on ambient measures. This paper uses an inexpensive, portable Particle Soot Absorption Photometer (PSAP) to measure Black Carbon (BC) emissions, a surrogate for diesel fuels emissions, in Seattle's International District. With the aid of a GPS receiver, street-level BC data were geocoded in real space-time. It was found that pollution levels differed substantially across the study area. The results show the need for street-level air pollution monitoring, revisions in current land use and transportation policies, and air quality planning practice.

Keywords

Emission Standards; Air Pollution; Atmospheric Deposition; Social Groups; Waste Products; Sanitary Landfills; Black Carbon; Freeway Air Pollution Sheds (faps); Land Use; Mobile Monitoring; Neighbourhood Air Quality; Aerosol Light-absorption; Respiratory Health; Coefficient; Exposure; Symptoms; Children; Pollutants; Particles; Exhaust; Asthma

Improved Fog Collection Using Turf Reinforcement Mats

Feld, Shara I.; Spencer, Benjamin R.; Bolton, Susan M. (2016). Improved Fog Collection Using Turf Reinforcement Mats. Journal Of Sustainable Water In The Built Environment, 2(3).

View Publication

Abstract

Impoverished communities are particularly vulnerable to increasing water scarcity. The development of low-cost technologies that improve access to unconventional water sources, such as the freshwater contained in fog, is one way to address water scarcity. Passive fog collectors, sited to maximize exposure to orographic and advection fog, are typically constructed using 35% Raschel mesh stretched within a structural frame. To assess improvements to this technology, the fog collection potential of nonwoven turf reinforcement mats ( TRM), underwent preliminary testing in a laboratory fog tunnel and more conclusive testing at a field site in Lima, Peru. In fog tunnel tests, both of the two tested TRM specimens increased fog collection yields over 35% Raschel mesh by 26 and 33% respectively. At one field site, the tested mats increased fog collection yields over 35% Raschel mesh by 62 and 75% respectively. At a second field site, these materials increased collection volumes over the 35% Raschel mesh by 146 and 178% respectively. Differences in TRM performance at different sites were likely due to different orientation to prevailing winds at the two test stations. This work suggests that nonwoven turf reinforcement mats have the potential to improve water access in arid, foggy low income communities. (C) 2016 American Society of Civil Engineers.

Keywords

Water; Efficiency; Fresh Water; Water Resources; Water Supply; Peru; Fog Capture

Development of a Regional Lidar-Derived Above-Ground Biomass Model with Bayesian Model Averaging for Use in Ponderosa Pine and Mixed Conifer Forests in Arizona and New Mexico, USA

Tenneson, Karis; Patterson, Matthew S.; Mellin, Thomas; Nigrelli, Mark; Joria, Peter; Mitchell, Brent. (2018). Development of a Regional Lidar-Derived Above-Ground Biomass Model with Bayesian Model Averaging for Use in Ponderosa Pine and Mixed Conifer Forests in Arizona and New Mexico, USA. Remote Sensing, 10(3).

View Publication

Abstract

Historical forest management practices in the southwestern US have left forests prone to high-severity, stand-replacement fires. Reducing the cost of forest-fire management and reintroducing fire to the landscape without negative impact depends on detailed knowledge of stand composition, in particular, above-ground biomass (AGB). Lidar-based modeling techniques provide opportunities to increase ability of managers to monitor AGB and other forest metrics at reduced cost. We developed a regional lidar-based statistical model to estimate AGB for Ponderosa pine and mixed conifer forest systems of the southwestern USA, using previously collected field data. Model selection was performed using Bayesian model averaging (BMA) to reduce researcher bias, fully explore the model space, and avoid overfitting. The selected model includes measures of canopy height, canopy density, and height distribution. The model selected with BMA explains 71% of the variability in field-estimates of AGB, and the RMSE of the two independent validation data sets are 23.25 and 32.82 Mg/ha. The regional model is structured in accordance with previously described local models, and performs equivalently to these smaller scale models. We have demonstrated the effectiveness of lidar for developing cost-effective, robust regional AGB models for monitoring and planning adaptively at the landscape scale.

Keywords

Laser Scanner Data; Landscape Restoration Program; Canopy Fuel Parameters; Discrete-return Lidar; Western United-states; Wave-form Lidar; Airborne Laser; Tropical Forest; Climate-change; Adaptive Management; Forest Biomass; Aboveground Biomass; Airborne Lidar; Monitoring; Regional Forest Inventory; Variable Selection; Bayesian Model Averaging; Multiple Linear Regression