Skip to content

Assessing the Expectations Gap – Impact on Critical Infrastructure Service Providers’ and Consumers’ Preparedness, and Response

While community lifeline service providers and local emergency managers must maintain coordinated response and recovery plans, their timelines may not match expectations of local consumers of lifeline services. Indeed, it is quite likely consumers have unrealistic expectations about lifeline restoration, which could explain current inadequate levels of disaster preparedness. This hypothesized expectation gap has received little attention because engineering research typically addresses providers’ capacities, whereas disaster research addresses household and business preparedness. Our project will address this neglected issue by assessing consumers’ (households, business owners/managers, nonprofit managers) expectations about lifeline system performance, and comparing them to lifeline provider capacity in a post-hazard event scenario (following a Cascadia subduction zone earthquake of 9.0 magnitude or greater) in two communities—Kirkland and Shoreline, WA (likely to experience most shaking in this scenario).

Our research will assess the role of the expectations gap in influencing consumers’ and providers’ preparedness as well as response. First, we estimate the gap between consumers and providers expectations using an earthquake scenario in two case study communities. We posit that low consumer preparedness for lifeline disruption is in part a function of low expectations that lengthy disruption will occur. Next, we test the effect of providing consumers and providers with information about this gap. Our proposed sharing estimates of lifeline restoration times should change these beliefs if our assumption about this specific basis for low preparedness is correct and if our audiences attend to, process, and act upon this information. In our longitudinal research, consumers (households, businesses, and nonprofits) and lifeline providers will complete two questionnaires each. Besides lifeline provider surveys, we will collect information about lifeline providers’ capabilities and work with them to estimate restoration times using an expert elicitation-based estimation framework. We will address the following research questions:

  1. What do consumers think is the likely level of critical lifeline disruption from an earthquake and the timeline for restoration?
  2. What are consumers’ current levels of preparedness for lifeline interruption?
  3. What do lifeline providers and an independent engineering expert think are providers’ capabilities to maintain and restore lifeline services?
  4. How do consumers’ expectations compare with providers’ capabilities (expectations gap)?
  5. How will this study’s feedback about the expectations gap affect consumers’ and providers’ lifeline resilience expectations, as well as their mitigation and preparedness intentions?

A Global Horizon Scan for Urban Evolutionary Ecology

Verrelli, Brian C.; Alberti, Marina; Des Roches, Simone; Harris, Nyeema C.; Hendry, Andrew P.; Johnson, Marc T. J.; Savage, Amy M.; Charmantier, Anne; Gotanda, Kiyoko M.; Govaert, Lynn; Miles, Lindsay S.; Rivkin, L. Ruth; Winchell, Kristin M.; Brans, Kristien I.; Correa, Cristian; Diamond, Sarah E.; Fitzhugh, Ben; Grimm, Nancy B.; Hughes, Sara; Marzluff, John M.; Munshi-south, Jason; Rojas, Carolina; Santangelo, James S.; Schell, Christopher J.; Schweitzer, Jennifer A.; Szulkin, Marta; Urban, Mark C.; Zhou, Yuyu; Ziter, Carly. (2022). A Global Horizon Scan for Urban Evolutionary Ecology. Trends In Ecology & Evolution, 37(11), 1006-1019.

View Publication

Abstract

Research on the evolutionary ecology of urban areas reveals how human-induced evolutionary changes affect biodiversity and essential ecosystem services. In a rapidly urbanizing world imposing many selective pressures, a time-sensitive goal is to identify the emergent issues and research priorities that affect the ecology and evolution of species within cities. Here, we report the results of a horizon scan of research questions in urban evolutionary ecology submitted by 100 interdisciplinary scholars. We identified 30 top questions organized into six themes that highlight priorities for future research. These research questions will require methodological advances and interdisciplinary collaborations, with continued revision as the field of urban evolutionary ecology expands with the rapid growth of cities.

Keywords

Urban Ecology; Sustainability; Cities & Towns; Ecosystem Dynamics; Urban Growth; Ecosystem Services; Urban Research; Climate Change; Sociopolitical; Urban Evolution; Urbanization; Human Health; Biodiversity; Adaptation; Challenges; Dynamics; Management; Invasion; Science

Back to the Future: Reintegrating Biology to Understand How Past Eco-evolutionary Change Can Predict Future Outcomes

Thompson, Cynthia L.; Alberti, Marina; Barve, Sahas; Battistuzzi, Fabia U.; Drake, Jeana L.; Goncalves, Guilherme Casas; Govaert, Lynn; Partridge, Charlyn; Yang, Ya. (2022). Back to the Future: Reintegrating Biology to Understand How Past Eco-evolutionary Change Can Predict Future Outcomes. Integrative And Comparative Biology, 61(6), 2218-2232.

View Publication

Abstract

During the last few decades, biologists have made remarkable progress in understanding the fundamental processes that shape life. But despite the unprecedented level of knowledge now available, large gaps still remain in our understanding of the complex interplay of eco-evolutionary mechanisms across scales of life. Rapidly changing environments on Earth provide a pressing need to understand the potential implications of eco-evolutionary dynamics, which can be achieved by improving existing eco-evolutionary models and fostering convergence among the sub-fields of biology. We propose a new, data-driven approach that harnesses our knowledge of the functioning of biological systems to expand current conceptual frameworks and develop corresponding models that can more accurately represent and predict future eco-evolutionary outcomes. We suggest a roadmap toward achieving this goal. This long-term vision will move biology in a direction that can wield these predictive models for scientific applications that benefit humanity and increase the resilience of natural biological systems. We identify short, medium, and long-term key objectives to connect our current state of knowledge to this long-term vision, iteratively progressing across three stages: (1) utilizing knowledge of biological systems to better inform eco-evolutionary models, (2) generating models with more accurate predictions, and (3) applying predictive models to benefit the biosphere. Within each stage, we outline avenues of investigation and scientific applications related to the timescales over which evolution occurs, the parameter space of eco-evolutionary processes, and the dynamic interactions between these mechanisms. The ability to accurately model, monitor, and anticipate eco-evolutionary changes would be transformational to humanity's interaction with the global environment, providing novel tools to benefit human health, protect the natural world, and manage our planet's biosphere.

Keywords

Rapid Evolution; Ecological Interactions; Niche Construction; Climate-change; Phenotype; Community; Selection; Fitness; Consequences; Variability

Embodied Carbon as a Proxy for the Environmental Impact of Earthquake Damage Repair

Simonen, K.; Huang, M.; Aicher, C.; Morris, P. (2018). Embodied Carbon as a Proxy for the Environmental Impact of Earthquake Damage Repair. Energy And Buildings, 164, 131 – 139.

View Publication

Abstract

In evaluating the life cycle environmental impacts of buildings, the contributions of seismic damage are rarely considered. In order to enable a more comprehensive assessment of a building's environmental impact by accounting for seismic events, this project developed an environmental impact database of building component seismic damage - the largest of its kind known to date - by combining data from Carnegie Mellon University's Economic Input-Output Life Cycle Analysis (LCA) database with cost estimates of repair previously developed for FEMA's Performance Assessment Calculation Tool (PACT), a software that models probabilistic seismic damage in buildings. Fifteen indicators of environmental impacts were calculated for the repair of approximately 800 building components for up to five levels of seismic damage, capturing 'embodied' impacts related to cradle-to-gate manufacturing of building materials, products, and equipment. Analysis of the data revealed that non-structural and architectural finishes often dominated the environmental impacts of seismic damage per dollar spent in repair. A statistical analysis was performed on the data using Principal Component Analysis, confirming that embodied carbon, a popular metric for evaluating environmental impacts in building LCAs, is a suitable proxy for other relevant environmental impact metrics when assessing the impact of repairing earthquake damage of buildings. (C) 2018 Elsevier B.V. All rights reserved.

Keywords

Life-cycle Assessment; Input-output; Buildings; Life Cycle Assessment; Seismic Analysis; Performance-based Design; Economic Input-output; Principal Component Analysis; Energy And Climate Change; Architectural Engineering; Carbon; Carbon Cycle; Earthquake Damage; Earthquakes; Environmental Impact; Environmental Management; Databases; Finishes; Environmental Assessment; Building Components; Construction Materials; Life Cycle Engineering; Life Cycle Analysis; Data Bases; Damage Assessment; Aseismic Buildings; Statistical Analysis; Equipment Costs; Cost Estimates; Data Processing; Data Analysis; Seismic Activity; Cost Analysis; Principal Components Analysis; Performance Assessment; Life Cycles; Repair; Impact Damage; Building Materials; Economic Analysis; Software

Climate-Driven Habitat Change Causes Evolution in Threespine Stickleback

Roches, Simone Des; Bell, Michael A.; Palkovacs, Eric P. (2020). Climate-Driven Habitat Change Causes Evolution in Threespine Stickleback. Global Change Biology, 26(2), 597 – 606.

View Publication

Abstract

Climate change can shape evolution directly by altering abiotic conditions or indirectly by modifying habitats, yet few studies have investigated the effects of climate-driven habitat change on contemporary evolution. We resampled populations of Threespine Stickleback (Gasterosteus aculeatus) along a latitudinal gradient in California bar-built estuaries to examine their evolution in response to changing climate and habitat. We took advantage of the strong association between stickleback lateral plate phenotypes and Ectodysplasin A (Eda) genotypes to infer changes in allele frequencies over time. Our results show that over time the frequency of low-plated alleles has generally increased and heterozygosity has decreased. Latitudinal patterns in stickleback plate phenotypes suggest that evolution at Eda is a response to climate-driven habitat transformation rather than a direct consequence of climate. As climate change has reduced precipitation and increased temperature and drought, bar-built estuaries have transitioned from lotic (flowing-water) to lentic (still-water) habitats, where the low-plated allele is favoured. The low-plated allele has achieved fixation at the driest, hottest southernmost sites, a trend that is progressing northward with climate change. Climate-driven habitat change is therefore causing a reduction in genetic variation that may hinder future adaptation for populations facing multiple threats.

Keywords

Gasterosteus-aculeatus; Natural-selection; 3-spined Stickleback; Armor; Populations; Patterns; Reductions; Adaptation; Capacity; Package; Climate Change; Gasterosteus Aculeatus; Intraspecific Variation; Latitudinal Gradient; Rapid Evolution; Resurvey; Space-for-time

Effects of Mid-Twenty-first Century Climate and Land Cover Change on the Hydrology Of the Puget Sound Basin, Washington

Cuo, Lan; Beyene, Tazebe K.; Voisin, Nathalie; Su, Fengge; Lettenmaier, Dennis P.; Alberti, Marina; Richey, Jeffrey E. (2011). Effects of Mid-Twenty-first Century Climate and Land Cover Change on the Hydrology Of the Puget Sound Basin, Washington. Hydrological Processes, 25(11), 1729 – 1753.

View Publication

Abstract

The distributed hydrology-soil-vegetation model (DHSVM) was used to study the potential impacts of projected future land cover and climate change on the hydrology of the Puget Sound basin, Washington, in the mid-twenty-first century. A 60-year climate model output, archived for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), was statistically downscaled and used as input to DHSVM. From the DHSVM output, we extracted multi-decadal averages of seasonal streamflow, annual maximum flow, snow water equivalent (SWE), and evapotranspiration centred around 2030 and 2050. Future land cover was represented by a 2027 projection, which was extended to 2050, and DHSVM was run (with current climate) for these future land cover projections. In general, the climate change signal alone on sub-basin streamflow was evidenced primarily through changes in the timing of winter and spring runoff, and slight increases in the annual runoff. Runoff changes in the uplands were attributable both to climate (increased winter precipitation, less snow) and land cover change (mostly reduced vegetation maturity). The most climatically sensitive parts of the uplands were in areas where the current winter precipitation is in the rain-snow transition zone. Changes in land cover were generally more important than climate change in the lowlands, where a substantial change to more urbanized land use and increased runoff was predicted. Both the annual total and seasonal distribution of freshwater flux to Puget Sound are more sensitive to climate change impacts than to land cover change, primarily because most of the runoff originates in the uplands. Both climate and land cover change slightly increase the annual freshwater flux to Puget Sound. Changes in the seasonal distribution of freshwater flux are mostly related to climate change, and consist of double-digit increases in winter flows and decreases in summer and fall flows. Copyright (C) 2010 John Wiley & Sons, Ltd.

Keywords

Joaquin River-basin; Water-resources; Change Impacts; Model; Sensitivity; Temperature; Prediction; Streamflow; Forecasts; Humidity; Hydrologic Prediction; Climate Change Impacts; Land Cover Change Impacts

Six Fundamental Aspects for Conceptualizing Multidimensional Urban Form: A Spatial Mapping Perspective

Wentz, Elizabeth A.; York, Abigail M.; Alberti, Marina; Conrow, Lindsey; Fischer, Heather; Inostroza, Luis; Jantz, Claire; Pickett, Steward T. A.; Seto, Karen C.; Taubenboeck, Hannes. (2018). Six Fundamental Aspects for Conceptualizing Multidimensional Urban Form: A Spatial Mapping Perspective. Landscape And Urban Planning, 179, 55 – 62.

View Publication

Abstract

Urbanization is currently one of the most profound transformations taking place across the globe influencing the flows of people, energy, and matter. The urban form influences and is influenced by these flows and is therefore critical in understanding and how urban areas affect and are affected by form. Nevertheless, there is a lack of uniformity in how urban form is analyzed. Urban form analyzed from a continuum of a simple urban versus non-urban classification to highly detailed representations of land use and land cover. Either end of the representation spectrum limits the ability to analyze within-urban dynamics, to make cross-city comparisons, and to produce generalizable results. In the framework of remote sensing and geospatial analysis, we identify and define six fundamental aspects of urban form, which are organized within three overarching components. Materials, or the physical elements of the urban landscape, consists of three aspects (1) human constructed elements, (2) the soil-plant continuum, and (3) water elements. The second component is configuration, which includes the (4) two- and three-dimensional space and (5) spatial pattern of urban areas. Lastly, because of the dynamics of human activities and biophysical processes, an important final component is the change of urban form over (6) time. We discuss how a this urban form framework integrates into a broader discussion of urbanization.

Keywords

Ecosystem Services; Land-use; Reconceptualizing Land; Cellular-automata; Heterogeneity; Framework; Model; Emissions; Dynamics; Cities; Gis; Remote Sensing; Land Use; Land Cover; Urban Form; Urban Materials; Energy; Humans; Land Use And Land Cover Maps; Landscapes; Urban Areas; Urbanization

Ecosystem Size Shapes Antipredator Trait Evolution in Estuarine Threespine Stickleback

Wasserman, Ben A.; Paccard, Antoine; Apgar, Travis M.; Des Roches, Simone; Barrett, Rowan D. H.; Hendry, Andrew P.; Palkovacs, Eric P. (2020). Ecosystem Size Shapes Antipredator Trait Evolution in Estuarine Threespine Stickleback. Oikos, 129(12), 1795 – 1806.

View Publication

Abstract

Ecosystem size is known to influence both community structure and ecosystem processes. Less is known about the evolutionary consequences of ecosystem size. A few studies have shown that ecosystem size shapes the evolution of trophic diversity by shaping habitat heterogeneity, but the effects of ecosystem size on antipredator trait evolution have not been explored. Ecosystem size may impact antipredator trait evolution by shaping predator presence (larger ecosystems have longer food chains) and habitat complexity (larger ecosystems may have more diverse habitat structure). We tested these effects using threespine stickleback from bar-built estuaries along the Central Coast of California. These stickleback populations are polymorphic forEctodysplasin-A(Eda), a gene that controls bony lateral plates used as antipredator defense. We inferredEdagenotypes from lateral plate phenotypes and show that the frequency of the complete (C) allele, which is associated with greater number of lateral plates, increases as a function of ecosystem size. Predator presence and habitat complexity are both correlated to ecosystem size. The strongest proximate predictor ofEdaallele frequencies was the presence of predatory fishes (steelhead trout and sculpin). Counter to expectations, habitat complexity did not have a strong modifying effect onEdaallele frequencies. Our results point to the importance of ecosystem size for determining predator presence as being the primary pathway to evolutionary effects. Ecosystem size has received much attention in ecology. Our work shows that it may be an important determinant of adaptive evolution in wild populations.

Keywords

Food-chain Length; Gasterosteus-aculeatus; Adaptive Radiation; Lateral Plates; Ecological Opportunity; Natural-selection; Armor; Fish; Predation; Area; Antipredator Traits; Bar-built Estuaries; Ecosystem Size; Ectodysplasin Agene; Gasterosteus Aculeatus

Terrestrial Carbon Stocks across a Gradient of Urbanization: A Study of the Seattle, WA Region

Hutyra, Lucy R.; Yoon, Byungman; Alberti, Marina. (2011). Terrestrial Carbon Stocks across a Gradient of Urbanization: A Study of the Seattle, WA Region. Global Change Biology, 17(2), 783 – 797.

View Publication

Abstract

Most of our global population and its CO2 emissions can be attributed to urban areas. The process of urbanization changes terrestrial carbon stocks and fluxes, which, in turn, impact ecosystem functions and atmospheric CO2 concentrations. Using the Seattle, WA, region as a case study, this paper explores the relationships between aboveground carbon stocks and land cover within an urbanizing area. The major objectives were to estimate aboveground live and dead terrestrial carbon stocks across multiple land cover classes and quantify the relationships between urban cover and vegetation across a gradient of urbanization. We established 154 sample plots in the Seattle region to assess carbon stocks as a function of distance from the urban core and land cover [urban (heavy, medium, and low), mixed forest, and conifer forest land covers]. The mean (and 95% CI) aboveground live biomass for the region was 89 +/- 22 Mg C ha-1 with an additional 11.8 +/- 4 Mg C ha-1 of coarse woody debris biomass. The average live biomass stored within forested and urban land covers was 140 +/- 40 and 18 +/- 14 Mg C ha-1, respectively, with a 57% mean vegetated canopy cover regionally. Both the total carbon stocks and mean vegetated canopy cover were surprisingly high, even within the heavily urbanized areas, well exceeding observations within other urbanizing areas and the average US forested carbon stocks. As urban land covers and populations continue to rapidly increase across the globe, these results highlight the importance of considering vegetation in urbanizing areas within the terrestrial carbon cycle.

Keywords

Urbanization & The Environment; Carbon Cycle; Carbon In Soils; Climate Change Prevention; Population & The Environment; Land Cover; Cities & Towns -- Environmental Conditions; Seattle (wash.); Washington (state); Climate Change; Development; Mitigation; Pacific Northwest; Urban; United-states; Woody Debris; Storage; Growth; Responses; Fluxes; Co2; Sequestration; Landscape; Forests

Resilience and ‘Technicity’: Challenges and Opportunities for New Knowledge Practices in Disaster Planning

Jon, Ihnji. (2019). Resilience and ‘Technicity’: Challenges and Opportunities for New Knowledge Practices in Disaster Planning. Resilience-International Policies Practices and Discourses, 7(2), 107 – 125.

View Publication

Abstract

With increasing exposure to environmental catastrophes and natural hazards, the terminology of 'resilience' is becoming ubiquitous in the planning field. As a part of this continuing discussion, this paper examines how the concept of resilience has been used in disaster planning, especially with a focus on the creation and use of knowledge to 'build resilience' in response to potential future natural hazard events. In discussing the practice of creating and using knowledge in disaster planning, I draw insights from the interdisciplinary critical studies of science and technology literature, which has been developing rich discussions on the challenges we face in producing geographical knowledge. I demonstrate in this paper how resilience theory can be linked with the concept of 'technicity' used in the virtual geography literature, and how that association can have meaningful implications for the production and application of knowledge in disaster planning.

Keywords

Community Resilience; Adaptive Capacity; Vulnerability; Hazard; Risk; Sustainability; Participation; Geographies; Uncertainty; Complexity; Resilience; Technicity; Disaster Planning; Virtual Geography; Knowledge Practice