Skip to content

Performative By-Products: The Emergence of Waste Reuse Strategies at the Blue Lagoon

De Almeida, Catherine. (2019). Performative By-Products: The Emergence of Waste Reuse Strategies at the Blue Lagoon. Journal of Landscape Architecture, 13(3), 64-77.

View Publication

Abstract

Materials and landscapes associated with waste are perceived as objectionable. By reactivating and embracing waste conditions as desirable opportunities for diverse programmes rooted in economy, ecology, and culture, designers can form hybrid assemblages on waste sites through the exchange of waste materials—a landscape lifecycles approach. This frame-work is applicable to not only design research, but also as a critical lens for evaluating the landscape performance of existing projects that engage with waste reuse. The Blue Lagoon in southwest Iceland materialized as a spa industry out of geothermal waste effluent from the adjacent Svartsengi Geothermal Power Station, reusing undesirable materials and transforming a waste landscape through diversified material recovery strategies. Featuring an industrial by-product turned economic generator, this case study reveals the opportunities for reusing geothermal ‘waste’ in these emergent landscape conditions, which hybridize economies with recreation, research, and ecology, and shift the conventional relationship with waste from passive to performative.

Keywords

Waste reuse; Blue Lagoon; material lifecycles; Iceland; landscape reclamation

A Water Quality Prediction Model for Large-scale Rivers Based on Projection Pursuit Regression in the Yangtze River

Yi, Ze-ji; Yang, Xiao-hua; Li, Yu-qi. (2022). A Water Quality Prediction Model for Large-scale Rivers Based on Projection Pursuit Regression in the Yangtze River. Thermal Science, 26(3), 2561-2567.

View Publication

Abstract

In recent decades, the Yangtze River Basin, which carries hundreds of millions of people and a substantial economic scale, has been plagued by water quality dete-rioration, threatening considerably sustainable development. In this paper, a sample set is established based on the water quality indexes of chemical oxygen demand and dissolved oxygen obtained by week-by-week monitoring on the main stream of the Yangtze River in Panzhihua, Yueyang, Jiujiang, and Nanjing from 2006 to 2018. The twelve characteristic variables are selected by random forest technique, and the week-by-week dynamic prediction models of chemical oxygen demand and dissolved oxygen at each section of main stream are established by the projection pursuit regression, which can effectively predict the water quality dynamics of the Yangtze River main stream.

Keywords

Pollution; Water Quality; Dynamic Prediction Model; Random Forest; Projection Pursuit Regression; Yangtze River

Improving Cascadia Subduction Zone Residents’ Tsunami Preparedness: Quasi-experimental Evaluation of an Evacuation Brochure

Lindell, Michael K.; Jung, Meen Chel; Prater, Carla S.; House, Donald H. (2022). Improving Cascadia Subduction Zone Residents’ Tsunami Preparedness: Quasi-experimental Evaluation of an Evacuation Brochure. Natural Hazards, 114(1), 849-881.

View Publication

Abstract

This study surveyed 227 residents in three US Pacific Coast communities that are vulnerable to a Cascadia subduction zone tsunami. In the Brochure condition, information was presented online, followed by questions about tsunamis. Respondents in the Comparison condition received the same questionnaire by mail but did not view the brochure. Respondents in the Brochure condition had higher levels of perceived information sufficiency than those in the Comparison condition about three of the five tsunami topics. Both conditions had generally realistic expectations about most tsunami warning sources. However, they had unrealistically high expectations of being warned of a local tsunami by social sources, such as route alerting, that could not be implemented before first wave arrival. They also had unrealistically high expectations being warned of a distant tsunami by ground shaking from the source earthquake, whose epicenter would be too far away for them to feel. Moreover, respondents in both conditions expected higher levels of personal property damage and family casualties than is the case for most hazards, but their levels of negative affective response were not especially high. Overall, only 10% of the sample accessed the tsunami brochure even when sent repeated contacts and the brochure demonstrated modest effects for those who did access it. These results suggest that state and local officials should engage in repeated personalized efforts to increase coastal communities' tsunami emergency preparedness because distribution of tsunami brochures has only a modest effect on preparedness.

Keywords

Subduction Zones; Tsunamis; Emergency Management; Tsunami Warning Systems; Brochures; Preparedness; Communities; Cascadia Subduction Zone Tsunami; Hazard Warnings; Quasi-experiment; Risk Communication; Risk Information-seeking; Natural Warning Signs; Earthquake; Awareness; Responses; Behavior; Model; Wellington; Hazard; Threat; Earthquakes; Casualties; Subduction; Vulnerability; Emergency Preparedness; Emergency Warning Programs; Levels; Seismic Activity; Property Damage; Shaking; Earthquake Damage; Subduction (geology); Disaster Management; Cascadia

Celina Balderas Guzmán

Celina Balderas Guzmán, PhD, is Assistant Professor in the Department of Landscape Architecture. Dr. Balderas’ research spans environmental planning, design, and science and focuses on climate adaptation to sea level rise on the coast and urban stormwater inland. On the coast, her work demonstrates specific ways that the climate adaptation actions of humans and adaptation of ecosystems are interdependent. Her work explores how these interdependencies can be maladaptive by shifting vulnerabilities to other humans or non-humans, or synergistic. Using ecological modeling, she has explored these interdependencies focusing on coastal wetlands as nature-based solutions. Her work informs cross-sectoral adaptation planning at a regional scale.

Inland, Dr. Balderas studies urban stormwater through a social-ecological lens. Using data science and case studies, her work investigates the relationship between stormwater pollution and the social, urban form, and land cover characteristics of watersheds. In past research, she developed new typologies of stormwater wetlands based on lab testing in collaboration with environmental engineers. The designs closely integrated hydraulic performance, ecological potential, and recreational opportunities into one form.

Her research has been funded by major institutions such as the National Science Foundation, National Socio-Environmental Synthesis Center, UC Berkeley, and the MIT Abdul Latif Jameel Water and Food Systems Lab. She has a PhD in the Department of Landscape Architecture and Environmental Planning from the University of California, Berkeley. Previously, she obtained masters degrees in urban planning and urban design, as well as an undergraduate degree in architecture all from MIT.

Dylan Stevenson

Dylan Stevenson’s (Prairie Band Potawatomi descent) research examines how culture informs planning strategies and influences land relationships. More specifically, he investigates how tribal epistemologies structure notions of Indigenous futurities by centering Indigenous cultural values at the forefront of environmental stewardship and cultural preservation. He is currently working on a project researching how governments (Federal, State, and Tribal) embed cultural values in Water Resources Planning strategies, drawing from ethnographic research he conducted in the joint territory of the United Keetoowah Band of Cherokee Indians and Cherokee Nation in Oklahoma. His other research interests include ecological restoration, intangible cultural heritage, and food systems planning. Previously, Dylan has worked for public and quasi-public entities dealing with the implementation and compliance of local, state, and federal legislation in California and has forthcoming work analyzing Diversity, Equity, and Inclusion (DEI) initiatives in planning programs.

Dylan earned his Ph.D. in the Department of City and Regional Planning at Cornell University. He earned his master’s degree in Planning with a concentration in Preservation and Design of the Built Environment from the University of Southern California, a bachelor’s degree in Linguistics with a minor in Native American Studies from the University of California—Davis, and an associate of arts degree in Liberal Arts from De Anza College.

Perceptions of Protective Actions for a Water Contamination Emergency

Lindell, Michael K.; Mumpower, Jeryl L.; Huang, Shih-kai; Wu, Hao-che; Samuelson, Charles D.; Wei, Hung-lung. (2017). Perceptions of Protective Actions for a Water Contamination Emergency. Journal Of Risk Research, 20(7), 887 – 908.

View Publication

Abstract

Local authorities who believe their water systems are contaminated need to warn those at risk to take protective actions. In the past, such efforts have often achieved only partial success in preventing people from deciding to continue consumption of contaminated drinking water. To examine the possible antecedents of decisions to comply with water consumption advisories, this study examined 110 Boston residents' actual protective actions and 203 Texas students' expected protective actions; their perceptions of three protective actions on seven attributes; and their risk perceptions, water contamination experience, facilitating conditions, and demographic characteristics. The profiles of the protective actions for the hazard-related and resource-related attributes suggest reasons why people preferred to use bottled water rather than boil or personally chlorinate water. In particular, perceived effectiveness in protecting health was the most important correlate of protective action, which means that a protective action can have a high level of implementation even though it has poor ratings on other attributes such as cost. In addition, this study indicates public health officials may also need to address people's misconceptions about the hazard-related and resource-related attributes of any relevant protective actions. Finally, consistent with an extensive body of previous research, students were similar to residents in many important respects even though were some statistically significant differences.

Keywords

Action Decision-model; Hazard Adjustments; College-students; Plant Accident; Risks; Metaanalysis; Triviality; Attitudes; Behavior; Adoption; Water Contamination; Risk Perception; Protective Action; Protective Action Attributes; Student Vs; Population Samples

Tsunami Preparedness and Resilience in the Cascadia Subduction Zone: A Multistage Model of Expected Evacuation Decisions and Mode Choice

Chen, Chen; Lindell, Michael K.; Wang, Haizhong. (2021). Tsunami Preparedness and Resilience in the Cascadia Subduction Zone: A Multistage Model of Expected Evacuation Decisions and Mode Choice. International Journal Of Disaster Risk Reduction, 59.

View Publication

Abstract

Physical scientists have estimated that the Cascadia Subduction Zone (CSZ) has as much as a 25% chance to produce a M9.0 earthquake and tsunami in the next 50 years, but few studies have used survey data to assess household risk perceptions, emergency preparedness, and evacuation intentions. To understand these phenomena, this study conducted a mail-based household questionnaire using the Protective Action Decision Model (PADM) as a guide to collect 483 responses from two coastal communities in the CSZ: Crescent City, CA and Coos Bay, OR. We applied multistage regression models to assess the effects of critical PADM variables. The results showed that three psychological variables (risk perception, perceived hazard knowledge, and evacuation mode efficacy) were associated with some demographic variables and experience variables. Evacuation intention and evacuation mode choice are associated with those psychological variables but not with demographic variables. Contrary to previous studies, location and experience had no direct impact on evacuation intention or mode choice. We also analyzed expected evacuation mode compliance and the potential of using micro-mobility during tsunami response. This study provides empirical evidence of tsunami preparedness and intentions to support interdisciplinary evacuation modeling, tsunami hazard education, community disaster preparedness, and resilience plans.

Keywords

False Discovery Rate; American-samoa; Earthquake; Washington; Behavior; Oregon; Wellington; Responses; Disaster; Tsunami Evacuation; Cascadia Subduction Zone; Risk Perception

Planning For The Future Of Urban Biodiversity: A Global Review Of City-scale Initiatives.

Nilon, Charles H.; Aronson, Myla F. J.; Cilliers, Sarel S.; Dobbs, Cynnamon; Frazee, Lauren J.; Goddard, Mark A.; O’Neill, Karen M.; Roberts, Debra; Stander, Emilie K.; Werner, Peter; Winter, Marten; Yocom, Ken P. (2017). Planning For The Future Of Urban Biodiversity: A Global Review Of City-scale Initiatives. Bioscience, 67(4), 331 – 341.

View Publication

Abstract

Cities represent considerable opportunities for forwarding global biodiversity and sustainability goals. We developed key attributes for conserving biodiversity and for ecosystem services that should be included in urban-planning documents and reviewed 135 plans from 40 cities globally. The most common attributes in city plans were goals for habitat conservation, air and water quality, cultural ecosystem services, and ecological connectivity. Few plans included quantitative targets. This lack of measurable targets may render plans unsuccessful for an actionable approach to local biodiversity conservation. Although most cities include both biodiversity and ecosystem services, each city tends to focus on one or the other. Comprehensive planning for biodiversity should include the full range of attributes identified, but few cities do this, and the majority that do are mandated by local, regional, or federal governments to plan specifically for biodiversity conservation. This research provides planning recommendations for protecting urban biodiversity based on ecological knowledge.

Keywords

Sustainability; Urban Planning; Urban Biodiversity; Urban Ecology (biology); Water Quality; Air Quality; Biodiversity Conservation; Ecosystem Services; Governance; Policy Regulation; Green Infrastructure; Climate-change; Human Health; Cities; Opportunities; Metaanalysis; Framework; Richness

Integrating Solutions to Adapt Cities for Climate Change

Lin, Brenda B.; Ossola, Alessandro; Alberti, Marina; Andersson, Erik; Bai, Xuemei; Dobbs, Cynnamon; Elmqvist, Thomas; Evans, Karl L.; Frantzeskaki, Niki; Fuller, Richard A.; Gaston, Kevin J.; Haase, Dagmar; Jim, Chi Yung; Konijnendijk, Cecil; Nagendra, Harini; Niemela, Jari; Mcphearson, Timon; Moomaw, William R.; Parnell, Susan; Pataki, Diane; Ripple, William J.; Tan, Puay Yok. (2021). Integrating Solutions to Adapt Cities for Climate Change. Lancet Planetary Health, 5(7), E479 – E486.

View Publication

Abstract

Record climate extremes are reducing urban liveability, compounding inequality, and threatening infrastructure. Adaptation measures that integrate technological, nature-based, and social solutions can provide multiple co-benefits to address complex socioecological issues in cities while increasing resilience to potential impacts. However, there remain many challenges to developing and implementing integrated solutions. In this Viewpoint, we consider the value of integrating across the three solution sets, the challenges and potential enablers for integrating solution sets, and present examples of challenges and adopted solutions in three cities with different urban contexts and climates (Freiburg, Germany; Durban, South Africa; and Singapore). We conclude with a discussion of research directions and provide a road map to identify the actions that enable successful implementation of integrated climate solutions. We highlight the need for more systematic research that targets enabling environments for integration; achieving integrated solutions in different contexts to avoid maladaptation; simultaneously improving liveability, sustainability, and equality; and replicating via transfer and scale-up of local solutions. Cities in systematically disadvantaged countries (sometimes referred to as the Global South) are central to future urban development and must be prioritised. Helping decision makers and communities understand the potential opportunities associated with integrated solutions for climate change will encourage urgent and deliberate strides towards adapting cities to the dynamic climate reality.

Keywords

Urban; Resilience; Energy; Water; Transformations; Sustainability; Opportunities; Challenges; Mitigation; Knowledge

Performance Assessment of a Street-Drainage Bioretention System

Chapman, Cameron; Horner, Richard R. (2010). Performance Assessment of a Street-Drainage Bioretention System. Water Environment Research, 82(2), 109 – 119.

View Publication

Abstract

Event-based, flow-paced composite sampling was carried out at the inlet and outlet of a street-side bioretention facility in Seattle, Washington, to assess its ability to reduce street runoff quantity and pollutants. Over 2.5 years, 48 to 74% of the incoming runoff was lost to infiltration and evaporation. Outlet pollutant concentrations were significantly lower than those at the inlet for nearly all monitored constituents. In terms of mass, the system retained most of the incoming pollutants. Besides soluble reactive phosphorus (the mass of which possibly increased), dissolved copper was the least effectively retained; at least 58% of dissolved copper (and potentially as much as 79%) was captured by the system. Motor oil was removed most effectively, with 92 to 96% of the incoming motor oil not leaving the system. The results indicate that bioretention systems can achieve a high level of runoff retention and treatment in real-weather conditions. Water Environ. Res., 82, 109 (2010).

Keywords

Stormwater; Removal; Runoff; Bioretention; Water Quality Monitoring; Best Management Practices; Low-impact Development