De Almeida, Catherine. (2019). Performative By-Products: The Emergence of Waste Reuse Strategies at the Blue Lagoon. Journal of Landscape Architecture, 13(3), 64-77.
View Publication
Abstract
Materials and landscapes associated with waste are perceived as objectionable. By reactivating and embracing waste conditions as desirable opportunities for diverse programmes rooted in economy, ecology, and culture, designers can form hybrid assemblages on waste sites through the exchange of waste materials—a landscape lifecycles approach. This frame-work is applicable to not only design research, but also as a critical lens for evaluating the landscape performance of existing projects that engage with waste reuse. The Blue Lagoon in southwest Iceland materialized as a spa industry out of geothermal waste effluent from the adjacent Svartsengi Geothermal Power Station, reusing undesirable materials and transforming a waste landscape through diversified material recovery strategies. Featuring an industrial by-product turned economic generator, this case study reveals the opportunities for reusing geothermal ‘waste’ in these emergent landscape conditions, which hybridize economies with recreation, research, and ecology, and shift the conventional relationship with waste from passive to performative.
Keywords
Waste reuse; Blue Lagoon; material lifecycles; Iceland; landscape reclamation
Yi, Ze-ji; Yang, Xiao-hua; Li, Yu-qi. (2022). A Water Quality Prediction Model for Large-scale Rivers Based on Projection Pursuit Regression in the Yangtze River. Thermal Science, 26(3), 2561-2567.
View Publication
Abstract
In recent decades, the Yangtze River Basin, which carries hundreds of millions of people and a substantial economic scale, has been plagued by water quality dete-rioration, threatening considerably sustainable development. In this paper, a sample set is established based on the water quality indexes of chemical oxygen demand and dissolved oxygen obtained by week-by-week monitoring on the main stream of the Yangtze River in Panzhihua, Yueyang, Jiujiang, and Nanjing from 2006 to 2018. The twelve characteristic variables are selected by random forest technique, and the week-by-week dynamic prediction models of chemical oxygen demand and dissolved oxygen at each section of main stream are established by the projection pursuit regression, which can effectively predict the water quality dynamics of the Yangtze River main stream.
Keywords
Pollution; Water Quality; Dynamic Prediction Model; Random Forest; Projection Pursuit Regression; Yangtze River
Lindell, Michael K.; Jung, Meen Chel; Prater, Carla S.; House, Donald H. (2022). Improving Cascadia Subduction Zone Residents’ Tsunami Preparedness: Quasi-experimental Evaluation of an Evacuation Brochure. Natural Hazards, 114(1), 849-881.
View Publication
Abstract
This study surveyed 227 residents in three US Pacific Coast communities that are vulnerable to a Cascadia subduction zone tsunami. In the Brochure condition, information was presented online, followed by questions about tsunamis. Respondents in the Comparison condition received the same questionnaire by mail but did not view the brochure. Respondents in the Brochure condition had higher levels of perceived information sufficiency than those in the Comparison condition about three of the five tsunami topics. Both conditions had generally realistic expectations about most tsunami warning sources. However, they had unrealistically high expectations of being warned of a local tsunami by social sources, such as route alerting, that could not be implemented before first wave arrival. They also had unrealistically high expectations being warned of a distant tsunami by ground shaking from the source earthquake, whose epicenter would be too far away for them to feel. Moreover, respondents in both conditions expected higher levels of personal property damage and family casualties than is the case for most hazards, but their levels of negative affective response were not especially high. Overall, only 10% of the sample accessed the tsunami brochure even when sent repeated contacts and the brochure demonstrated modest effects for those who did access it. These results suggest that state and local officials should engage in repeated personalized efforts to increase coastal communities' tsunami emergency preparedness because distribution of tsunami brochures has only a modest effect on preparedness.
Keywords
Subduction Zones; Tsunamis; Emergency Management; Tsunami Warning Systems; Brochures; Preparedness; Communities; Cascadia Subduction Zone Tsunami; Hazard Warnings; Quasi-experiment; Risk Communication; Risk Information-seeking; Natural Warning Signs; Earthquake; Awareness; Responses; Behavior; Model; Wellington; Hazard; Threat; Earthquakes; Casualties; Subduction; Vulnerability; Emergency Preparedness; Emergency Warning Programs; Levels; Seismic Activity; Property Damage; Shaking; Earthquake Damage; Subduction (geology); Disaster Management; Cascadia
Celina Balderas Guzmán, PhD, is Assistant Professor in the Department of Landscape Architecture. Dr. Balderas’ research spans environmental planning, design, and science and focuses on climate adaptation to sea level rise on the coast and urban stormwater inland. On the coast, her work demonstrates specific ways that the climate adaptation actions of humans and adaptation of ecosystems are interdependent. Her work explores how these interdependencies can be maladaptive by shifting vulnerabilities to other humans or non-humans, or synergistic. Using ecological modeling, she has explored these interdependencies focusing on coastal wetlands as nature-based solutions. Her work informs cross-sectoral adaptation planning at a regional scale.
Inland, Dr. Balderas studies urban stormwater through a social-ecological lens. Using data science and case studies, her work investigates the relationship between stormwater pollution and the social, urban form, and land cover characteristics of watersheds. In past research, she developed new typologies of stormwater wetlands based on lab testing in collaboration with environmental engineers. The designs closely integrated hydraulic performance, ecological potential, and recreational opportunities into one form.
Her research has been funded by major institutions such as the National Science Foundation, National Socio-Environmental Synthesis Center, UC Berkeley, and the MIT Abdul Latif Jameel Water and Food Systems Lab. She has a PhD in the Department of Landscape Architecture and Environmental Planning from the University of California, Berkeley. Previously, she obtained masters degrees in urban planning and urban design, as well as an undergraduate degree in architecture all from MIT.
Dylan Stevenson’s (Prairie Band Potawatomi descent) research examines how culture informs planning strategies and influences land relationships. More specifically, he investigates how tribal epistemologies structure notions of Indigenous futurities by centering Indigenous cultural values at the forefront of environmental stewardship and cultural preservation. He is currently working on a project researching how governments (Federal, State, and Tribal) embed cultural values in Water Resources Planning strategies, drawing from ethnographic research he conducted in the joint territory of the United Keetoowah Band of Cherokee Indians and Cherokee Nation in Oklahoma. His other research interests include ecological restoration, intangible cultural heritage, and food systems planning. Previously, Dylan has worked for public and quasi-public entities dealing with the implementation and compliance of local, state, and federal legislation in California and has forthcoming work analyzing Diversity, Equity, and Inclusion (DEI) initiatives in planning programs.
Dylan earned his Ph.D. in the Department of City and Regional Planning at Cornell University. He earned his master’s degree in Planning with a concentration in Preservation and Design of the Built Environment from the University of Southern California, a bachelor’s degree in Linguistics with a minor in Native American Studies from the University of California—Davis, and an associate of arts degree in Liberal Arts from De Anza College.
Cuo, Lan; Beyene, Tazebe K.; Voisin, Nathalie; Su, Fengge; Lettenmaier, Dennis P.; Alberti, Marina; Richey, Jeffrey E. (2011). Effects of Mid-Twenty-first Century Climate and Land Cover Change on the Hydrology Of the Puget Sound Basin, Washington. Hydrological Processes, 25(11), 1729 – 1753.
View Publication
Abstract
The distributed hydrology-soil-vegetation model (DHSVM) was used to study the potential impacts of projected future land cover and climate change on the hydrology of the Puget Sound basin, Washington, in the mid-twenty-first century. A 60-year climate model output, archived for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), was statistically downscaled and used as input to DHSVM. From the DHSVM output, we extracted multi-decadal averages of seasonal streamflow, annual maximum flow, snow water equivalent (SWE), and evapotranspiration centred around 2030 and 2050. Future land cover was represented by a 2027 projection, which was extended to 2050, and DHSVM was run (with current climate) for these future land cover projections. In general, the climate change signal alone on sub-basin streamflow was evidenced primarily through changes in the timing of winter and spring runoff, and slight increases in the annual runoff. Runoff changes in the uplands were attributable both to climate (increased winter precipitation, less snow) and land cover change (mostly reduced vegetation maturity). The most climatically sensitive parts of the uplands were in areas where the current winter precipitation is in the rain-snow transition zone. Changes in land cover were generally more important than climate change in the lowlands, where a substantial change to more urbanized land use and increased runoff was predicted. Both the annual total and seasonal distribution of freshwater flux to Puget Sound are more sensitive to climate change impacts than to land cover change, primarily because most of the runoff originates in the uplands. Both climate and land cover change slightly increase the annual freshwater flux to Puget Sound. Changes in the seasonal distribution of freshwater flux are mostly related to climate change, and consist of double-digit increases in winter flows and decreases in summer and fall flows. Copyright (C) 2010 John Wiley & Sons, Ltd.
Keywords
Joaquin River-basin; Water-resources; Change Impacts; Model; Sensitivity; Temperature; Prediction; Streamflow; Forecasts; Humidity; Hydrologic Prediction; Climate Change Impacts; Land Cover Change Impacts
Bailey, David R.; Dittbrenner, Benjamin J.; Yocom, Ken P. (2019). Reintegrating The North American Beaver (castor Canadensis) In The Urban Landscape. Wires Water, 6(1).
View Publication
Abstract
In recent decades, ecological restoration and landscape architecture have focused on reintegrating ecological processes in the urban environment to support greater habitat complexity and increase biodiversity. As these values are more broadly recognized, new approaches are being investigated to increase ecosystem services and ecological benefits in urban areas. Ecosystem engineers, such as the North American beaver (Castor canadensis), can create complex habitat and influence ecological processes in natural environments. Through dam building and wetland formation, beaver can create fish habitat, diversify vegetation in riparian zones, and aggrade sediment to increase stream productivity. As beaver populations have increased in urban areas across North America, their presence presents challenges and opportunities. Beaver can be integrated into the design of new and established urban green spaces to improve ecosystem functions. If managed properly, the conflicts that beaver sometimes create can be minimized. In this paper, we examine how landscape architects and restoration ecologists are anticipating the geomorphic and hydrological implications of beaver reintroduction in the design of wetlands and urban natural areas at regional and site levels. We present an urban beaver map and three case studies in Seattle, WA, USA, to identify various approaches, successes, and management strategies for integrating the actions of beaver into project designs. We make recommendations for how designers can capitalize on the benefits of beaver by identifying sites with increased likelihood of colonization, leveraging ecosystem engineers in design conception, designing site features to reduce constraints for the reintroduction and establishment of beaver, and anticipating and managing impacts. This article is categorized under: Water and Life > Conservation, Management, and Awareness Engineering Water > Planning Water
Keywords
Beavers; Cities & Towns In Art; Nature; Riparian Areas; Municipal Water Supply; Restoration Ecology; Wetland Ecology; United States; Seattle (wash.); North America; Beaver; Biodiversity; Castor Canadensis; Ecological Design; Ecological Restoration; Ecosystem Engineers; Ecosystem Services; Species Richness; Wetland Habitat; River-basin; Dams; Channel; Streams; Impact; Water; Ponds; Ecology; Urban Populations; Habitats; Ecosystem Management; Landscape Architecture; Colonization; Fish; Geomorphology; Habitat; Design; Ecological Monitoring; Landscape; Urban Areas; Restoration; Riparian Environments; Ecosystems; Wetlands; Ecologists; Reintroduction; Case Studies; Environmental Restoration; Open Spaces; Freshwater Mammals; Urban Environments; Aquatic Mammals; Water Conservation; Ecological Effects; Disputes; Design Engineering; Dam Construction; Engineers; Urban Planning; Complexity; Hydrology
Su, Shu; Li, Xiaodong; Zhu, Chen; Lu, Yujie; Lee, Hyun Woo. (2021). Dynamic Life Cycle Assessment: A Review of Research for Temporal Variations in Life Cycle Assessment Studies. Environmental Engineering Science, 38(11), 1013 – 1026.
View Publication
Abstract
Life cycle assessment (LCA) is a comprehensive and important environmental management tool around the world. However, lacking temporal information has been a major challenge. In the past decade, dynamic LCA (DLCA), which incorporates temporal variations into assessment, has been an emerging research topic with increasing publications. A timely comprehensive review is needed to present current progress and discuss future directions. This article reviews 144 DLCA articles quantitatively and qualitatively. A bibliometric approach is adopted to conduct co-occurrence analysis and cluster analysis of DLCA studies. The research progress, approaches, and limitations of three temporal variation types (i.e., dynamic life cycle inventory, dynamic characterization factors, and dynamic weighting factors) in DLCA studies are systematically analyzed and discussed. It is concluded that: (1) dynamic inventory analysis is usually conducted by collecting time-differentiated data at each time step. Field monitoring, simulation, scenario analysis, and prediction based on historical data are common approaches. (2) Dynamic characterization studies primarily focus on two impact categories: global warming and toxicity. More studies are in need. (3) Various methods and indicators (i.e., dynamic pollution damage cost, temporal environmental policy targets, and discount rates) are used to solve the dynamic weighting issue, and they have specific limitations. Finally, three interesting topics are discussed: comparison between dynamic and static results, the large data amount issue, and the trend of tools development. This review offers a holistic view on temporal variations in DLCA studies and provides reference and directions for future dynamic studies.
Keywords
Literature Reviews; Cluster Analysis (statistics); Global Warming; Environmental Management; Discount Prices; Emission Inventories; Dynamic Characterization; Dynamic Inventory Analysis; Dynamic Weighting; Environmental Impact; Life Cycle Assessment; Temporal Variation; Cluster Analysis; Life Cycle; 'current; Dynamic Inventory Analyse; Dynamic Lca; Environmental Management Tool; Inventory Analysis; Research Topics; Temporal Information; Dependent Climate Impact; Greenhouse-gas Emission; Biogenic Carbon; Assessment Framework; Fresh-water; Electricity-generation; Energy Efficiency; Wheat Production; Embodied Energy; Time
Karvonen, Andrew; Yocom, Ken. (2011). The Civics Of Urban Nature: Enacting Hybrid Landscapes. Environment & Planning A, 43(6), 1305 – 1322.
View Publication
Abstract
Urban nature is typically managed through top-down, bureaucratic, and expert-driven approaches that tend to rationalize and simplify the interactions between humans and their surroundings. In the last few decades, there has been a significant push in cultural geography and the design disciplines to develop a relational ontology of urban nature, a perspective that emphasizes the hybrid connections between humans and nonhumans, built and unbuilt, social and natural. This perspective offers new and exciting ways of conceptualizing urban nature but it has not produced alternatives to conventional governance. In other words, thinking differently about urban nature has yet to produce different ways of interacting with it. In this paper we argue that civic environmentalism can enact a relational ontology by engaging urban residents in processes of democratic deliberation and action in the reworking of urban nature. We illustrate this approach with a case study of a community-led project to construct a pedestrian trail along an urban creek in Seattle, Washington. The example demonstrates how the concept of civic environmentalism embraces a relational perspective of urban nature, while also producing generative forms of political action.
Keywords
Cities & Towns; Ontology; Deliberation; Environmentalism; Trails; Rivers; Washington (state); Seattle (wash.)
Jon, Ihnji; Huang, Shih-Kai; Lindell, Michael K. (2019). Perceptions and Expected Immediate Reactions to Severe Storm Displays. Risk Analysis, 39(1), 274 – 290.
View Publication
Abstract
The National Weather Service has adopted warning polygons that more specifically indicate the risk area than its previous county-wide warnings. However, these polygons are not defined in terms of numerical strike probabilities (p(s)). To better understand people's interpretations of warning polygons, 167 participants were shown 23 hypothetical scenarios in one of three information conditions-polygon-only (Condition A), polygon + tornadic storm cell (Condition B), and polygon + tornadic storm cell + flanking nontornadic storm cells (Condition C). Participants judged each polygon's p(s) and reported the likelihood of taking nine different response actions. The polygon-only condition replicated the results of previous studies; p(s) was highest at the polygon's centroid and declined in all directions from there. The two conditions displaying storm cells differed from the polygon-only condition only in having p(s) just as high at the polygon's edge nearest the storm cell as at its centroid. Overall, p(s) values were positively correlated with expectations of continuing normal activities, seeking information from social sources, seeking shelter, and evacuating by car. These results indicate that participants make more appropriate p(s) judgments when polygons are presented in their natural context of radar displays than when they are presented in isolation. However, the fact that p(s) judgments had moderately positive correlations with both sheltering (a generally appropriate response) and evacuation (a generally inappropriate response) suggests that experiment participants experience the same ambivalence about these two protective actions as people threatened by actual tornadoes.
Keywords
Decision-making; Tornado; Risk; Communication; Numeracy; Residents; Shelter; Events; Protective Actions; Risk Perceptions; Tornado Warning Polygons; Judgments; Tornadoes; Meteorological Services; Storms; Lymphocytes B; Polygons; Emergency Warning Programs; Evacuation; Displays; Inappropriateness; Weather; Warnings; Conditions; Ambivalence