Laishram, B., Devkar, G., Ke, Y., & Aziz, A. A. (2024). Guest editorial: Public private partnerships: past, present and future. Built Environment Project and Asset Management, 14(1), 1–3. https://doi.org/10.1108/BEPAM-02-2024-207.
Person: Ahmed Abdel Aziz
The Articulation and Current Practices of Liquidated Damages in Standard Specifications for Highways
Abdel Aziz, A. M., & Muiruri, K. (2023). The Articulation and Current Practices of Liquidated Damages in Standard Specifications for Highways. Journal of Legal Affairs and Dispute Resolution in Engineering and Construction, 15(4). https://doi.org/10.1061/JLADAH.LADR-959
Abstract
Delayed delivery of highway infrastructure could financially hurt businesses that rely on such facilities, disrupt the public commute, and increase road user costs. For these reasons, state highway agencies (SHAs) tend to use and enforce liquidated damages (LDs) for the contractor’s failure to meet the completion times. While SHAs may have similar experiences on how their standard specifications (SSs) are structured and written, there are differences among the states on how the LDs are articulated. Further, with their requirements, SHAs need to maintain that their LDs regulations follow and account for the Code of Federal Regulations, for example, CFR.635.127. Additionally, contractors may legally challenge the LDs enforceability as unreasonable, excessive, penalty statements, or concurrently caused. This work aims to critically examine and thoroughly analyze how LDs were articulated in the SSs. For that, the LDs sections, definitions, and contract times of the standard specifications of all departments of transportation in the United States were collected, thoroughly reviewed, compared, and analyzed. With commonalities and differences among the SSs, themes of LDs current practice were identified under LDs characterization, application periods, reference times, and implementation forms. A detailed account of the particulars of each theme and practice is discussed and explained. The work provides insights for SHAs to evaluate their current LDs practice to other states’ practices to improve how LDs provisions are articulated.
Statistical Analysis and Representation Models of Working-Days Liquidated Damages
Abdel Aziz, A. M. (2023). Statistical Analysis and Representation Models of Working-Days Liquidated Damages. Journal of Construction Engineering and Management, 149(7). https://doi.org/10.1061/JCEMD4.COENG-13330
Abstract
Contractors tend to challenge the enforceability of liquidated damages (LDs), claiming they are unreasonable, excessive, penalty statements, or concurrently caused. States customarily assert that the LD rates are a genuine reflection of the expenses expected to be suffered when a project gets delayed due to noncompletion. While there are common practices among the states for articulating LD specifications, which generally follow the Federal Code of Regulations, there are no published studies that assist states in comparing their LD rates to those of other states so that the LD rates might be defended. Further, there are no studies that offer models that would uncover the relationship between the LD rates and the contract sizes so that the LD rates might be justified. This work addresses such gaps in the body of knowledge (BOK) in LDs. With emphasis on the working-days (WD) LD rate schedules, the objectives of this work are to characterize the LD rate schedules across the states and to model a formula(s) that would represent the relationship between the WD LD rates and the contract amounts. The data set for the work represents the LD schedules in the standard specifications of all departments of transportation in the United States. Descriptive and cluster statistical analyses were used for the LD rate characterization. For model development, several linear and nonlinear regression models were employed. The results highlighted considerable LDs variability in the smaller contract sizes and exceptional LD rates stability in the larger sizes. Despite the economic differences among the states, it is found that the LD rate is, on average, 0.02 ¢/$ for projects $20 million or above. Below that, the rate increases between 0.03 ¢/$ and 0.18 ¢/$ until the contracts reach $750,000. LD rates tend to decrease sharply with the increase in contract sizes, forming an L or reverse J shape. This pattern proved complex, and only nonlinear regression with transformed variables successfully modeled it. Credible models were obtained after satisfying the least-squares regression assumptions. The work contributes to the BOK by adding a new statistical dimension to understanding LDs and developing regression model(s) that explain the relationships between the LD rates and the contract sizes. The work should help SHAs create, evaluate, and justify their LD rates.
Stackelberg Game Theory-Based Optimization Model for Design of Payment Mechanism in Performance-Based PPPs
Shang, Luming; Aziz, Ahmed M. Abdel. (2020). Stackelberg Game Theory-Based Optimization Model for Design of Payment Mechanism in Performance-Based PPPs. Journal Of Construction Engineering And Management, 146(4).
Abstract
Payment mechanisms lie at the heart of public-private partnership (PPP) contracts. A good design of the payment mechanism should consider the owner's goals in the project, allocate risks appropriately to stakeholders, and assure satisfactory performance by providing reasonable compensation to the private developer. This paper proposes a Stackelberg game theory-based model to assist public agencies in designing payment mechanisms for PPP transportation projects. The interests of both public and private sectors are considered and reflected by a bilevel objective function. The model aims to search for solutions that maximize a project's overall performance for the sake of social welfare while simultaneously maximizing return for the sake of private investment. A variable elimination method and genetic algorithm are used to solve the optimization model. A case study based on a real PPP project is discussed to validate the effectiveness of the proposed model. The solutions provided by the model reveal that the optimal payment mechanism structure could be established such that it would satisfy owners' requirements for overall project performance while optimizing project total payments to contractors.
Keywords
Construction Industry; Contracts; Financial Management; Game Theory; Genetic Algorithms; Investment; Optimisation; Organisational Aspects; Project Management; Public Administration; Transportation; Public-private Partnership Contracts; Good Design; Private Developer; Stackelberg Game Theory-based Model; Ppp Transportation Projects; Public Sectors; Private Sectors; Private Investment; Ppp Project; Optimal Payment Mechanism Structure; Project Performance; Project Total Payments; Stackelberg Game Theory-based Optimization Model; Performance-based Ppps; Public-private Partnerships; Analytic Hierarchy Process; Weighted Sum Method; Multiobjective Optimization; Algorithm; Incentives; Projects; Network; Success; Branch
The Practice of Roadway Safety Management in Public-Private Partnerships
Aziz, Ahmed M. Abdel. (2021). The Practice of Roadway Safety Management in Public-Private Partnerships. Journal Of Construction Engineering And Management, 147(12).
Abstract
As a matter of course, the private party in public-private partnerships (PPPs) assumes the responsibility for roadway safety management (RSM). However, because most PPPs are performance-based, public highway agencies must articulate the specifications and methods they develop to enforce RSM practices. Despite the increased interest in PPPs in recent decades, little has been published on developing and propagating the RSM practices used with this delivery system. To fill this research gap and explore RSM practices in PPPs, this work took a synthesis research approach, using content analysis to critically review and analyze 16 PPP agreements in seven states and provinces leading in PPP contracting in North America. The study discovered several methods and organized them under five mechanisms: Mechanism 1, integrating roadway safety into project performance specifications and initiating new tools such as safety compliance orders; Mechanism 2, imposing nonconformance monetary deductions based on point and classification systems; Mechanism 3, regulating safety payments on the basis of crash statistics; Mechanism 4, promoting safety initiative programs; and Mechanism 5, enforcing administrative countermeasures such as work suspension and default/termination triggers for persistent developer noncompliance. Mechanisms 1 and 5 were the default mechanisms in all toll- and availability-based projects, whereas Mechanism 2 was common in availability-only projects. The research reviewed the RSM packages in the PPP agreements, elucidating the particulars of the RSM mechanisms, highlighting RSM design considerations, presenting implementation guidelines, and articulating research needs. The research results were validated against PPP highways in five other states and provinces. This synthesis research provides highway agencies with an extensive practice review to support RSM package design for future PPP projects.
Keywords
Qualitative Research; Incentives; Public-private Partnerships (ppps); Performance Specifications; Roadway Safety; Payment Mechanisms; Availability Payment; Highways
PhD in the Built Environment
The College of Built Environments consists of five departments that together provide one of the country’s few comprehensive built environment programs within one academic unit: Architecture, Construction Management, Landscape Architecture, Real Estate, and Urban Design and Planning. Together, this combination of departments enable faculty and students to engage almost the entire development process, from economic and environmental planning, real estate, regulatory processes, siting and design, through actual financing and construction, to facility management and adaptive reuse in subsequent stages. Thus, the college is inherently multi-disciplinary, not only in terms of the dimensions of reality that it treats, but also in regard to the specialized disciplines, methods, and practices that it employs: history, theory, cultural criticism, engineering, design, planning, urban design, energy sciences, acoustics, lighting, environmental psychology, ecology, real estate analysis, statistics, management, horticulture, soil science, law, public policy, and ethics. In addition, because of the College’s focus on comprehensive analysis and practice concerning the built environment and its interrelation with society, it is substantially engaged in interdisciplinary work with other units on campus and outside of the campus, including mechanical, civil, and electrical engineering; with public policy and the health sciences; with art and art history; with textual interpretation in the humanities; with many of the computing and digitization activities that range from digital arts to the information school and technical communications; with education and social studies and services; with sustainability and ecological programs, including urban ecology, geography, the College of Forest Resources (especially urban horticulture and urban forestry), and Ocean Science and Fisheries; with environmental and land use law.
The College’s interdisciplinary character is a good fit with the emerging trends in today’s complex world, where only a pluralistic and collaborative approach will generate the necessary learning and teaching, research, and service. If we are to provide, in the end, both disciplinary and professional means to promote environmental well-being, the diverse environmental specializations must be fully integrated. Thus, working outside traditional disciplinary and departmental categories, the College’s faculty will advance solutions to problems that demand interdisciplinary perspectives and expertise. Other UW units bring much to bear on the built environment and students are wholeheartedly encouraged to explore possible cross-campus connections both in obvious and seemingly unlikely places. The Technology and Project Design/Delivery specialization especially connects with Psychology, the Information School, Technical Communication, Computer Science and Engineering, and Industrial Engineering; the Sustainable Systems and Prototypes field with Civil Engineering, Electrical Engineering, Industrial Engineering, Mechanical Engineering, the Information School, Technical Communication, the College of Forest Resources (especially Eco-System Science and Conservation, Urban Horticulture and Urban Forestry), the Evans School of Public Affairs, Geography, Public Health, Ocean Science and Fisheries, and Social Work, Urban Ecology, and perhaps Advanced Materials and Manufacturing Processes and Nanotechnology; the area of History, Theory, and Representation with Textual Studies, Art History, Interdisciplinary Arts & Sciences at Tacoma, and Comparative History of Ideas.
Ahmed Abdel-Aziz
Aziz is an Associate Professor with the Department of Construction Management and Adjunct Associate Professor with the Department of Civil and Environmental Engineering. Aziz is known for his experience in the public-private partnership (PPP) alternative project delivery system; he has participated in committees, given presentations and talks, wrote book chapters, and published technical articles in leading academic journals in the USA, Canada, and the UK. Along with PPP, and with experience in construction project management, Aziz teaches project planning, scheduling, and control, Primavera and MS Project, estimating, life-cycle cost modeling for project economics, and quantitative risk analysis techniques. Aziz holds the UW honor of being a P. D. Koon Endowed Professor of Construction Management. He also works as Associate Editor for the Canadian Journal of Civil Engineers.