Skip to content

City Planning Policies to Support Health and Sustainability: An International Comparison of Policy Indicators for 25 Cities

Lowe, Melanie; Adlakha, Deepti; Sallis, James F.; Salvo, Deborah; Cerin, Ester; Moudon, Anne Vernez; Higgs, Carl; Hinckson, Erica; Arundel, Jonathan; Boeing, Geoff; Liu, Shiqin; Mansour, Perla; Gebel, Klaus; Puig-ribera, Anna; Mishra, Pinki Bhasin; Bozovic, Tamara; Carson, Jacob; Dygryn, Jan; Florindo, Alex A.; Ho, Thanh Phuong; Hook, Hannah; Hunter, Ruth F.; Lai, Poh-chin; Molina-garcia, Javier; Nitvimol, Kornsupha; Oyeyemi, Adewale L.; Ramos, Carolina D. G.; Resendiz, Eugen; Troelsen, Jens; Witlox, Frank; Giles-corti, Billie. (2022). City Planning Policies to Support Health and Sustainability: An International Comparison of Policy Indicators for 25 Cities. Lancet Global Health, 10(6), E882-E894.

View Publication

Abstract

City planning policies influence urban lifestyles, health, and sustainability. We assessed policy frameworks for city planning for 25 cities across 19 lower-middle-income countries, upper-middle-income countries, and high-income countries to identify whether these policies supported the creation of healthy and sustainable cities. We systematically collected policy data for evidence-informed indicators related to integrated city planning, air pollution, destination accessibility, distribution of employment, demand management, design, density, distance to public transport, and transport infrastructure investment. Content analysis identified strengths, limitations, and gaps in policies, allowing us to draw comparisons between cities. We found that despite common policy rhetoric endorsing healthy and sustainable cities, there was a paucity of measurable policy targets in place to achieve these aspirations. Some policies were inconsistent with public health evidence, which sets up barriers to achieving healthy and sustainable urban environments. There is an urgent need to build capacity for health-enhancing city planning policy and governance, particularly in low-income and middle-income countries.

Keywords

Physical-activity; Population Health; Walkability

Deciphering the Impact of Urban Built Environment Density on Respiratory Health Using a Quasi-cohort Analysis of 5495 Non-smoking Lung Cancer Cases

Wang, Lan; Sun, Wenyao; Moudon, Anne Vernez; Zhu, Yong-guan; Wang, Jinfeng; Bao, Pingping; Zhao, Xiaojing; Yang, Xiaoming; Jia, Yinghui; Zhang, Surong; Wu, Shuang; Cai, Yuxi. (2022). Deciphering the Impact of Urban Built Environment Density on Respiratory Health Using a Quasi-cohort Analysis of 5495 Non-smoking Lung Cancer Cases. Science Of The Total Environment, 850.

View Publication

Abstract

Introduction: Lung cancer is a major health concern and is influenced by air pollution, which can be affected by the den-sity of urban built environment. The spatiotemporal impact of urban density on lung cancer incidence remains unclear, especially at the sub-city level. We aimed to determine cumulative effect of community-level density attributes of the built environment on lung cancer incidence in high-density urban areas. Methods: We selected 78 communities in the central city of Shanghai, China as the study site; communities included in the analysis had an averaged population density of 313 residents per hectare. Using data from the city cancer surveil-lance system, an age-period-cohort analysis of lung cancer incidence was performed over a five-year period (2009-2013), with a total of 5495 non-smoking/non-secondhand smoking exposure lung cancer cases. Community -level density measures included the density of road network, facilities, buildings, green spaces, and land use mixture. Results: In multivariate models, built environment density and the exposure time duration had an interactive effect on lung cancer incidence. Lung cancer incidence of birth cohorts was associated with road density and building coverage across communities, with a relative risk of 1middot142 (95 % CI: 1middot056-1middot234, P = 0middot001) and 1middot090 (95 % CI: 1middot053-1middot128, P < 0middot001) at the baseline year (2009), respectively. The relative risk increased exponentially with the exposure timeduration. As for the change in lung cancer incidence over the five-year period, lung cancer incidence of birth cohorts tended to increase faster in communities with a higher road density and building coverage. Conclusion: Urban planning policies that improve road network design and building layout could be important strate-gies to reduce lung cancer incidence in high-density urban areas.

Keywords

Air-quality; Pollutant Dispersion; Risk-factors; Land-use; Mortality; Exposure; Cities; Transport; Compact City; Longitudinal Analysis; Lung Cancer; Urban Planning

Differences in Weight Gain Following Residential Relocation in the Moving to Health (M2H) Study

Cruz, Maricela; Drewnowski, Adam; Bobb, Jennifer F.; Hurvitz, Philip M.; Moudon, Anne Vernez; Cook, Andrea; Mooney, Stephen J.; Buszkiewicz, James H.; Lozano, Paula; Rosenberg, Dori E.; Kapos, Flavia; Theis, Mary Kay; Anau, Jane; Arterburn, David. (2022). Differences in Weight Gain Following Residential Relocation in the Moving to Health (M2H) Study. Epidemiology, 33(5), 747-755.

View Publication

Abstract

Background: Neighborhoods may play an important role in shaping long-term weight trajectory and obesity risk. Studying the impact of moving to another neighborhood may be the most efficient way to determine the impact of the built environment on health. We explored whether residential moves were associated with changes in body weight. Methods: Kaiser Permanente Washington electronic health records were used to identify 21,502 members aged 18-64 who moved within King County, WA between 2005 and 2017. We linked body weight measures to environment measures, including population, residential, and street intersection densities (800 m and 1,600 m Euclidian buffers) and access to supermarkets and fast foods (1,600 m and 5,000 m network distances). We used linear mixed models to estimate associations between postmove changes in environment and changes in body weight. Results: In general, moving from high-density to moderate- or low-density neighborhoods was associated with greater weight gain postmove. For example, those moving from high to low residential density neighborhoods (within 1,600 m) gained an average of 4.5 (95% confidence interval [CI] = 3.0, 5.9) lbs 3 years after moving, whereas those moving from low to high-density neighborhoods gained an average of 1.3 (95% CI = -0.2, 2.9) lbs. Also, those moving from neighborhoods without fast-food access (within 1600m) to other neighborhoods without fast-food access gained less weight (average 1.6 lbs [95% CI = 0.9, 2.4]) than those moving from and to neighborhoods with fast-food access (average 2.8 lbs [95% CI = 2.5, 3.2]). Conclusions: Moving to higher-density neighborhoods may be associated with reductions in adult weight gain.

Keywords

Body-mass Index; Neighborhood Socioeconomic-status; New-york-city; Built Environment; Physical-activity; Food Environment; Urban Sprawl; Risk-factors; Obesity; Walking; Electronic Medical Records; Fast Foods; Population Density; Residential Density; Residential Moves; Supermarkets

Using Open Data and Open-source Software to Develop Spatial Indicators of Urban Design and Transport Features for Achieving Healthy and Sustainable Cities

Boeing, Geoff; Higgs, Carl; Liu, Shiqin; Giles-corti, Billie; Sallis, James F.; Cerin, Ester; Lowe, Melanie; Adlakha, Deepti; Hinckson, Erica; Moudon, Anne Vernez; Salvo, Deborah; Adams, Marc A.; Barrozo, Ligia, V; Bozovic, Tamara; Delclos-alio, Xavier; Dygryn, Jan; Ferguson, Sara; Gebel, Klaus; Thanh Phuong Ho; Lai, Poh-chin; Martori, Joan C.; Nitvimol, Kornsupha; Queralt, Ana; Roberts, Jennifer D.; Sambo, Garba H.; Schipperijn, Jasper; Vale, David; Van De Weghe, Nico; Vich, Guillem; Arundel, Jonathan. (2022). Using Open Data and Open-source Software to Develop Spatial Indicators of Urban Design and Transport Features for Achieving Healthy and Sustainable Cities. Lancet Global Health, 10(6), E907-E918.

View Publication

Abstract

Benchmarking and monitoring of urban design and transport features is crucial to achieving local and international health and sustainability goals. However, most urban indicator frameworks use coarse spatial scales that either only allow between-city comparisons, or require expensive, technical, local spatial analyses for within-city comparisons. This study developed a reusable, open-source urban indicator computational framework using open data to enable consistent local and global comparative analyses. We show this framework by calculating spatial indicators-for 25 diverse cities in 19 countries-of urban design and transport features that support health and sustainability. We link these indicators to cities' policy contexts, and identify populations living above and below critical thresholds for physical activity through walking. Efforts to broaden participation in crowdsourcing data and to calculate globally consistent indicators are essential for planning evidence-informed urban interventions, monitoring policy effects, and learning lessons from peer cities to achieve health, equity, and sustainability goals.

Keywords

Systems; Access; Care

What Next? Expanding Our View of City Planning and Global Health, and Implementing and Monitoring Evidence-informed Policy

Giles-corti, Billie; Moudon, Anne Vernez; Lowe, Melanie; Cerin, Ester; Boeing, Geoff; Frumkin, Howard; Salvo, Deborah; Foster, Sarah; Kleeman, Alexandra; Bekessy, Sarah; De Sa, Thiago Herick; Nieuwenhuijsen, Mark; Higgs, Carl; Hinckson, Erica; Adlakha, Deepti; Arundel, Jonathan; Liu, Shiqin; Oyeyemi, Adewale L.; Nitvimol, Kornsupha; Sallis, James F. (2022). What Next? Expanding Our View of City Planning and Global Health, and Implementing and Monitoring Evidence-informed Policy. Lancet Global Health, 10(6), E919-E926.

View Publication

Abstract

This Series on urban design, transport, and health aimed to facilitate development of a global system of health-related policy and spatial indicators to assess achievements and deficiencies in urban and transport policies and features. This final paper in the Series summarises key findings, considers what to do next, and outlines urgent key actions. Our study of 25 cities in 19 countries found that, despite many well intentioned policies, few cities had measurable standards and policy targets to achieve healthy and sustainable cities. Available standards and targets were often insufficient to promote health and wellbeing, and health-supportive urban design and transport features were often inadequate or inequitably distributed. City planning decisions affect human and planetary health and amplify city vulnerabilities, as the COVID-19 pandemic has highlighted. Hence, we offer an expanded framework of pathways through which city planning affects health, incorporating 11 integrated urban system policies and 11 integrated urban and transport interventions addressing current and emerging issues. Our call to action recommends widespread uptake and further development of our methods and open-source tools to create upstream policy and spatial indicators to benchmark and track progress; unmask spatial inequities; inform interventions and investments; and accelerate transitions to net zero, healthy, and sustainable cities.

Food Environment and Socioeconomic Status Influence Obesity Rates in Seattle and in Paris

Drewnowski, A.; Moudon, A. V.; Jiao, J.; Aggarwal, A.; Charreire, H.; Chaix, B. (2014). Food Environment and Socioeconomic Status Influence Obesity Rates in Seattle and in Paris. International Journal Of Obesity, 38(2), 306 – 314.

View Publication

Abstract

OBJECTIVE: To compare the associations between food environment at the individual level, socioeconomic status (SES) and obesity rates in two cities: Seattle and Paris. METHODS: Analyses of the SOS (Seattle Obesity Study) were based on a representative sample of 1340 adults in metropolitan Seattle and King County. The RECORD (Residential Environment and Coronary Heart Disease) cohort analyses were based on 7131 adults in central Paris and suburbs. Data on sociodemographics, health and weight were obtained from a telephone survey (SOS) and from in-person interviews (RECORD). Both studies collected data on and geocoded home addresses and food shopping locations. Both studies calculated GIS (Geographic Information System) network distances between home and the supermarket that study respondents listed as their primary food source. Supermarkets were further stratified into three categories by price. Modified Poisson regression models were used to test the associations among food environment variables, SES and obesity. RESULTS: Physical distance to supermarkets was unrelated to obesity risk. By contrast, lower education and incomes, lower surrounding property values and shopping at lower-cost stores were consistently associated with higher obesity risk. CONCLUSION: Lower SES was linked to higher obesity risk in both Paris and Seattle, despite differences in urban form, the food environments and in the respective systems of health care. Cross-country comparisons can provide new insights into the social determinants of weight and health.

Keywords

Obesity; Health & Social Status; Social Status; Supermarkets; Grocery Shopping; Physiology; Body-mass Index; Dietary Energy Density; Atherosclerosis Risk; Weight Status; Us Adults; Associations; Health; French; Access; Socioeconomic Status (ses); Access To Supermarket; Food Environment; Food Shopping

Geographic Disparities in Healthy Eating Index Scores (HEI-2005 and 2010) by Residential Property Values: Findings from Seattle Obesity Study (SOS)

Drewnowski, Adam; Aggarwal, Anju; Cook, Andrea; Stewart, Orion; Moudon, Anne Vernez. (2016). Geographic Disparities in Healthy Eating Index Scores (HEI-2005 and 2010) by Residential Property Values: Findings from Seattle Obesity Study (SOS). Preventive Medicine, 83, 46 – 55.

View Publication

Abstract

Background. Higher socioeconomic status (SES) has been linked with higher-quality diets. New GIS methods allow for geographic mapping of diet quality at a very granular level. Objective. To examine the geographic distribution of two measures of diet quality: Healthy Eating Index (HEI 2005 and HEI 2010) in relation to residential property values in Seattle-King County. Methods. The Seattle Obesity Study (SOS) collected data from a population-based sample of King County adults in 2008-09. Socio-demographic data were obtained by 20-min telephone survey. Dietary data were obtained from food frequency questionnaires (FFQs). Home addresses were geocoded to the tax parcel and residential property values were obtained from the King County tax assessor. Multivariable regression analyses using 1116 adults tested associations between SES variables and diet quality measured (HEI scores). Results. Residential property values, education, and incomes were associated with higher HEI scores in bivariate analyses. Property values were not collinear with either education or income. In adjusted multivariable models, education and residential property were better associated with HEI, compared to than income. Mapping of HEI-2005 and HEI-2010 at the census block level illustrated the geographic distribution of diet quality across Seattle-King County. Conclusion. The use of residential property values, an objective measure of SES, allowed for the first visual exploration of diet quality at high spatial resolution: the census block level. (C) 2015 Elsevier Inc. All rights reserved.

Keywords

Obesity Treatment; Prevention Of Obesity; Disease Mapping; Socioeconomics; Multivariate Analysis; Population Geography; Census; Diet; Housing; Nutrition Policy; Questionnaires; Research Funding; Socioeconomic Factors; Body Mass Index; Health Equity; Cross-sectional Method; Economics; Seattle (wash.); Washington (state); Diet Quality; Geographic Information Systems; Healthy Eating Index; Residential Property Values; Socio-economic Status; Local Food Environment; Vitamin-e Consumption; Socioeconomic Position; United-states; Social-class; Energy-density; Association; Indicators; Trends

The Association between Park Facilities and Duration of Physical Activity During Active Park Visits

Stewart, Orion T.; Moudon, Anne Vernez; Littman, Alyson J.; Seto, Edmund; Saelens, Brian E. (2018). The Association between Park Facilities and Duration of Physical Activity During Active Park Visits. Journal Of Urban Health, 95(6), 869 – 880.

View Publication

Abstract

Public parks provide places for urban residents to obtain physical activity (PA), which is associated with numerous health benefits. Adding facilities to existing parks could be a cost-effective approach to increase the duration of PA that occurs during park visits. Using objectively measured PA and comprehensively measured park visit data among an urban community-dwelling sample of adults, we tested the association between the variety of park facilities that directly support PA and the duration of PA during park visits where any PA occurred. Cross-classified multilevel models were used to account for the clustering of park visits (n=1553) within individuals (n=372) and parks (n=233). Each additional different PA facility at a park was independently associated with a 6.8% longer duration of PA bouts that included light-intensity activity, and an 8.7% longer duration of moderate to vigorous PA time. Findings from this study are consistent with the hypothesis that more PA facilities increase the amount of PA that visitors obtain while already active at a park.

Keywords

Park Facilities; Physical Activity; Park Use; Recreation; Built Environment; Global Positioning System; Accelerometer; Gis; Gps; Accelerometer Data; United-states; Adults; Proximity; Features; Walking; Size; Attractiveness; Improvements; Environment; Parks & Recreation Areas; Parks; Luminous Intensity; Clustering; Urban Areas

Does the Built Environment Have Independent Obesogenic Power? Urban Form and Trajectories of Weight Gain

Buszkiewicz, James H.; Bobb, Jennifer F.; Hurvitz, Philip M.; Arterburn, David; Moudon, Anne Vernez; Cook, Andrea; Mooney, Stephen J.; Cruz, Maricela; Gupta, Shilpi; Lozano, Paula; Rosenberg, Dori E.; Theis, Mary Kay; Anau, Jane; Drewnowski, Adam. (2021). Does the Built Environment Have Independent Obesogenic Power? Urban Form and Trajectories of Weight Gain. International Journal Of Obesity, 45(9), 1914 – 1924.

View Publication

Abstract

Objective To determine whether selected features of the built environment can predict weight gain in a large longitudinal cohort of adults. Methods Weight trajectories over a 5-year period were obtained from electronic health records for 115,260 insured patients aged 18-64 years in the Kaiser Permanente Washington health care system. Home addresses were geocoded using ArcGIS. Built environment variables were population, residential unit, and road intersection densities captured using Euclidean-based SmartMaps at 800-m buffers. Counts of area supermarkets and fast food restaurants were obtained using network-based SmartMaps at 1600, and 5000-m buffers. Property values were a measure of socioeconomic status. Linear mixed effects models tested whether built environment variables at baseline were associated with long-term weight gain, adjusting for sex, age, race/ethnicity, Medicaid insurance, body weight, and residential property values. Results Built environment variables at baseline were associated with differences in baseline obesity prevalence and body mass index but had limited impact on weight trajectories. Mean weight gain for the full cohort was 0.06 kg at 1 year (95% CI: 0.03, 0.10); 0.64 kg at 3 years (95% CI: 0.59, 0.68), and 0.95 kg at 5 years (95% CI: 0.90, 1.00). In adjusted regression models, the top tertile of density metrics and frequency counts were associated with lower weight gain at 5-years follow-up compared to the bottom tertiles, though the mean differences in weight change for each follow-up year (1, 3, and 5) did not exceed 0.5 kg. Conclusions Built environment variables that were associated with higher obesity prevalence at baseline had limited independent obesogenic power with respect to weight gain over time. Residential unit density had the strongest negative association with weight gain. Future work on the influence of built environment variables on health should also examine social context, including residential segregation and residential mobility.

Keywords

Body-mass Index; Physical-activity; Food Environment; Structural Racism; Obesity; Neighborhoods; Associations; Health; Walkability; Exposure; Environment Models; Minority & Ethnic Groups; Urban Environments; Regression Analysis; Regression Models; Residential Density; Body Mass Index; Property Values; Body Weight Gain; Government Programs; Body Weight; Electronic Medical Records; Electronic Health Records; Fast Food; Buffers; Real Estate; Body Mass; Body Size; Socioeconomics; Health Care

A Neighborhood Wealth Metric for Use in Health Studies

Moudon, Anne Vernez; Cook, Andrea J.; Ulmer, Jared; Hurvitz, Philip M.; Drewnowski, Adam. (2011). A Neighborhood Wealth Metric for Use in Health Studies. American Journal Of Preventive Medicine, 41(1), 88 – 97.

View Publication

Abstract

Background: Measures of neighborhood deprivation used in health research are typically based on conventional area-based SES. Purpose: The aim of this study is to examine new data and measures of SES for use in health research. Specifically, assessed property values are introduced as a new individual-level metric of wealth and tested for their ability to substitute for conventional area-based SES as measures of neighborhood deprivation. Methods: The analysis was conducted in 2010 using data from 1922 participants in the 2008-2009 survey of the Seattle Obesity Study (SOS). It compared the relative strength of the association between the individual-level neighborhood wealth metric (assessed property values) and area-level SES measures (including education, income, and percentage above poverty as single variables, and as the composite Singh index) on the binary outcome fair/poor general health status. Analyses were adjusted for gender, categoric age, race, employment status, home ownership, and household income. Results: The neighborhood wealth measure was more predictive of fair/poor health status than area-level SES measures, calculated either as single variables or as indices (lower DIC measures for all models). The odds of having a fair/poor health status decreased by 0.85 (95% CI=0.77, 0.93) per $50,000 increase in neighborhood property values after adjusting for individual-level SES measures. Conclusions: The proposed individual-level metric of neighborhood wealth, if replicated in other areas, could replace area-based SES measures, thus simplifying analyses of contextual effects on health. (Am J Prev Med 2011; 41(1): 88-97) (C) 2011 American Journal of Preventive Medicine

Keywords

Health -- Social Aspects; Social Status; Public Health Research; Home Ownership; Income; Real Property; Deprivation (psychology); Health Education; Disparities Geocoding Project; Body-mass Index; Socioeconomic-status; Ecological Fallacy; Built Environment; Deprivation Indexes; Multilevel Analysis; Individual-level; Social-class; Inequalities