Skip to content

City Planning Policies to Support Health and Sustainability: An International Comparison of Policy Indicators for 25 Cities

Lowe, Melanie; Adlakha, Deepti; Sallis, James F.; Salvo, Deborah; Cerin, Ester; Moudon, Anne Vernez; Higgs, Carl; Hinckson, Erica; Arundel, Jonathan; Boeing, Geoff; Liu, Shiqin; Mansour, Perla; Gebel, Klaus; Puig-ribera, Anna; Mishra, Pinki Bhasin; Bozovic, Tamara; Carson, Jacob; Dygryn, Jan; Florindo, Alex A.; Ho, Thanh Phuong; Hook, Hannah; Hunter, Ruth F.; Lai, Poh-chin; Molina-garcia, Javier; Nitvimol, Kornsupha; Oyeyemi, Adewale L.; Ramos, Carolina D. G.; Resendiz, Eugen; Troelsen, Jens; Witlox, Frank; Giles-corti, Billie. (2022). City Planning Policies to Support Health and Sustainability: An International Comparison of Policy Indicators for 25 Cities. Lancet Global Health, 10(6), E882-E894.

View Publication

Abstract

City planning policies influence urban lifestyles, health, and sustainability. We assessed policy frameworks for city planning for 25 cities across 19 lower-middle-income countries, upper-middle-income countries, and high-income countries to identify whether these policies supported the creation of healthy and sustainable cities. We systematically collected policy data for evidence-informed indicators related to integrated city planning, air pollution, destination accessibility, distribution of employment, demand management, design, density, distance to public transport, and transport infrastructure investment. Content analysis identified strengths, limitations, and gaps in policies, allowing us to draw comparisons between cities. We found that despite common policy rhetoric endorsing healthy and sustainable cities, there was a paucity of measurable policy targets in place to achieve these aspirations. Some policies were inconsistent with public health evidence, which sets up barriers to achieving healthy and sustainable urban environments. There is an urgent need to build capacity for health-enhancing city planning policy and governance, particularly in low-income and middle-income countries.

Keywords

Physical-activity; Population Health; Walkability

Deciphering the Impact of Urban Built Environment Density on Respiratory Health Using a Quasi-cohort Analysis of 5495 Non-smoking Lung Cancer Cases

Wang, Lan; Sun, Wenyao; Moudon, Anne Vernez; Zhu, Yong-guan; Wang, Jinfeng; Bao, Pingping; Zhao, Xiaojing; Yang, Xiaoming; Jia, Yinghui; Zhang, Surong; Wu, Shuang; Cai, Yuxi. (2022). Deciphering the Impact of Urban Built Environment Density on Respiratory Health Using a Quasi-cohort Analysis of 5495 Non-smoking Lung Cancer Cases. Science Of The Total Environment, 850.

View Publication

Abstract

Introduction: Lung cancer is a major health concern and is influenced by air pollution, which can be affected by the den-sity of urban built environment. The spatiotemporal impact of urban density on lung cancer incidence remains unclear, especially at the sub-city level. We aimed to determine cumulative effect of community-level density attributes of the built environment on lung cancer incidence in high-density urban areas. Methods: We selected 78 communities in the central city of Shanghai, China as the study site; communities included in the analysis had an averaged population density of 313 residents per hectare. Using data from the city cancer surveil-lance system, an age-period-cohort analysis of lung cancer incidence was performed over a five-year period (2009-2013), with a total of 5495 non-smoking/non-secondhand smoking exposure lung cancer cases. Community -level density measures included the density of road network, facilities, buildings, green spaces, and land use mixture. Results: In multivariate models, built environment density and the exposure time duration had an interactive effect on lung cancer incidence. Lung cancer incidence of birth cohorts was associated with road density and building coverage across communities, with a relative risk of 1middot142 (95 % CI: 1middot056-1middot234, P = 0middot001) and 1middot090 (95 % CI: 1middot053-1middot128, P < 0middot001) at the baseline year (2009), respectively. The relative risk increased exponentially with the exposure timeduration. As for the change in lung cancer incidence over the five-year period, lung cancer incidence of birth cohorts tended to increase faster in communities with a higher road density and building coverage. Conclusion: Urban planning policies that improve road network design and building layout could be important strate-gies to reduce lung cancer incidence in high-density urban areas.

Keywords

Air-quality; Pollutant Dispersion; Risk-factors; Land-use; Mortality; Exposure; Cities; Transport; Compact City; Longitudinal Analysis; Lung Cancer; Urban Planning

Differences in Weight Gain Following Residential Relocation in the Moving to Health (M2H) Study

Cruz, Maricela; Drewnowski, Adam; Bobb, Jennifer F.; Hurvitz, Philip M.; Moudon, Anne Vernez; Cook, Andrea; Mooney, Stephen J.; Buszkiewicz, James H.; Lozano, Paula; Rosenberg, Dori E.; Kapos, Flavia; Theis, Mary Kay; Anau, Jane; Arterburn, David. (2022). Differences in Weight Gain Following Residential Relocation in the Moving to Health (M2H) Study. Epidemiology, 33(5), 747-755.

View Publication

Abstract

Background: Neighborhoods may play an important role in shaping long-term weight trajectory and obesity risk. Studying the impact of moving to another neighborhood may be the most efficient way to determine the impact of the built environment on health. We explored whether residential moves were associated with changes in body weight. Methods: Kaiser Permanente Washington electronic health records were used to identify 21,502 members aged 18-64 who moved within King County, WA between 2005 and 2017. We linked body weight measures to environment measures, including population, residential, and street intersection densities (800 m and 1,600 m Euclidian buffers) and access to supermarkets and fast foods (1,600 m and 5,000 m network distances). We used linear mixed models to estimate associations between postmove changes in environment and changes in body weight. Results: In general, moving from high-density to moderate- or low-density neighborhoods was associated with greater weight gain postmove. For example, those moving from high to low residential density neighborhoods (within 1,600 m) gained an average of 4.5 (95% confidence interval [CI] = 3.0, 5.9) lbs 3 years after moving, whereas those moving from low to high-density neighborhoods gained an average of 1.3 (95% CI = -0.2, 2.9) lbs. Also, those moving from neighborhoods without fast-food access (within 1600m) to other neighborhoods without fast-food access gained less weight (average 1.6 lbs [95% CI = 0.9, 2.4]) than those moving from and to neighborhoods with fast-food access (average 2.8 lbs [95% CI = 2.5, 3.2]). Conclusions: Moving to higher-density neighborhoods may be associated with reductions in adult weight gain.

Keywords

Body-mass Index; Neighborhood Socioeconomic-status; New-york-city; Built Environment; Physical-activity; Food Environment; Urban Sprawl; Risk-factors; Obesity; Walking; Electronic Medical Records; Fast Foods; Population Density; Residential Density; Residential Moves; Supermarkets

Using Open Data and Open-source Software to Develop Spatial Indicators of Urban Design and Transport Features for Achieving Healthy and Sustainable Cities

Boeing, Geoff; Higgs, Carl; Liu, Shiqin; Giles-corti, Billie; Sallis, James F.; Cerin, Ester; Lowe, Melanie; Adlakha, Deepti; Hinckson, Erica; Moudon, Anne Vernez; Salvo, Deborah; Adams, Marc A.; Barrozo, Ligia, V; Bozovic, Tamara; Delclos-alio, Xavier; Dygryn, Jan; Ferguson, Sara; Gebel, Klaus; Thanh Phuong Ho; Lai, Poh-chin; Martori, Joan C.; Nitvimol, Kornsupha; Queralt, Ana; Roberts, Jennifer D.; Sambo, Garba H.; Schipperijn, Jasper; Vale, David; Van De Weghe, Nico; Vich, Guillem; Arundel, Jonathan. (2022). Using Open Data and Open-source Software to Develop Spatial Indicators of Urban Design and Transport Features for Achieving Healthy and Sustainable Cities. Lancet Global Health, 10(6), E907-E918.

View Publication

Abstract

Benchmarking and monitoring of urban design and transport features is crucial to achieving local and international health and sustainability goals. However, most urban indicator frameworks use coarse spatial scales that either only allow between-city comparisons, or require expensive, technical, local spatial analyses for within-city comparisons. This study developed a reusable, open-source urban indicator computational framework using open data to enable consistent local and global comparative analyses. We show this framework by calculating spatial indicators-for 25 diverse cities in 19 countries-of urban design and transport features that support health and sustainability. We link these indicators to cities' policy contexts, and identify populations living above and below critical thresholds for physical activity through walking. Efforts to broaden participation in crowdsourcing data and to calculate globally consistent indicators are essential for planning evidence-informed urban interventions, monitoring policy effects, and learning lessons from peer cities to achieve health, equity, and sustainability goals.

Keywords

Systems; Access; Care

What Next? Expanding Our View of City Planning and Global Health, and Implementing and Monitoring Evidence-informed Policy

Giles-corti, Billie; Moudon, Anne Vernez; Lowe, Melanie; Cerin, Ester; Boeing, Geoff; Frumkin, Howard; Salvo, Deborah; Foster, Sarah; Kleeman, Alexandra; Bekessy, Sarah; De Sa, Thiago Herick; Nieuwenhuijsen, Mark; Higgs, Carl; Hinckson, Erica; Adlakha, Deepti; Arundel, Jonathan; Liu, Shiqin; Oyeyemi, Adewale L.; Nitvimol, Kornsupha; Sallis, James F. (2022). What Next? Expanding Our View of City Planning and Global Health, and Implementing and Monitoring Evidence-informed Policy. Lancet Global Health, 10(6), E919-E926.

View Publication

Abstract

This Series on urban design, transport, and health aimed to facilitate development of a global system of health-related policy and spatial indicators to assess achievements and deficiencies in urban and transport policies and features. This final paper in the Series summarises key findings, considers what to do next, and outlines urgent key actions. Our study of 25 cities in 19 countries found that, despite many well intentioned policies, few cities had measurable standards and policy targets to achieve healthy and sustainable cities. Available standards and targets were often insufficient to promote health and wellbeing, and health-supportive urban design and transport features were often inadequate or inequitably distributed. City planning decisions affect human and planetary health and amplify city vulnerabilities, as the COVID-19 pandemic has highlighted. Hence, we offer an expanded framework of pathways through which city planning affects health, incorporating 11 integrated urban system policies and 11 integrated urban and transport interventions addressing current and emerging issues. Our call to action recommends widespread uptake and further development of our methods and open-source tools to create upstream policy and spatial indicators to benchmark and track progress; unmask spatial inequities; inform interventions and investments; and accelerate transitions to net zero, healthy, and sustainable cities.

Transportation-Efficient Land Use Mapping Index (TELUMI), a Tool to Assess Multimodal Transportation Options in Metropolitan Regions

Moudon, Anne Vernez; Sohn, D. W.; Kavage, Sarah E.; Mabry, Jean E. (2011). Transportation-Efficient Land Use Mapping Index (TELUMI), a Tool to Assess Multimodal Transportation Options in Metropolitan Regions. International Journal Of Sustainable Transportation, 5(2), 111 – 133.

View Publication

Abstract

The Transportation-Efficient Land Use Mapping Index (TELUMI) is a tool to visualize and to quantify micro-level metropolitan land use and development patterns as they affect travel demand. It can assist transportation and urban planning authorities in identifying zones where land use supports multimodal travel and in determining a region's transportation system efficiency. An application of the TELUMI in the Seattle region showed that residential units and employment concentrated in transportation-efficient areas covering less than 20 percent of the region. An interactive, multi-scaled tool, the TELUMI can also support scenario building to simulate land use changes that improve transportation system performance.

Keywords

Urban; Geographic Information Systems; Land Use; Mapping Index; Metropolitan; Multimodal Travel; Transportation Efficiency

The Geography of Diabetes by Census Tract in a Large Sample of Insured Adults in King County, Washington, 2005-2006

Drewnowski, Adam; Rehm, Colin D.; Moudon, Anne V.; Arterburn, David. (2014). The Geography of Diabetes by Census Tract in a Large Sample of Insured Adults in King County, Washington, 2005-2006. Preventing Chronic Disease, 11.

View Publication

Abstract

Introduction Identifying areas of high diabetes prevalence can have an impact on public health prevention and intervention programs. Local health practitioners and public health agencies lack small-area data on obesity and diabetes. Methods Clinical data from the Group Health Cooperative health care system were used to estimate diabetes prevalence among 59,767 adults by census tract. Area-based measures of socioeconomic status and the Modified Retail Food Environment Index were obtained at the census-tract level in King County, Washington. Spatial analyses and regression models were used to assess the relationship between census tract level diabetes and area-based socioeconomic status and food environment variables. The mediating effect of obesity on the geographic distribution of diabetes was also examined. Results In this population of insured adults, diabetes was concentrated in south and southeast King County, with smoothed diabetes prevalence ranging from 6.9% to 21.2%. In spatial regression models, home value and college education were more strongly associated with diabetes than was household income. For each 50% increase in median home value, diabetes prevalence was 1.2 percentage points lower. The Modified Retail Food Environment Index was not related to diabetes at the census-tract level. The observed associations between area-based socioeconomic status and diabetes were largely mediated by obesity (home value, 58%; education, 47%). Conclusion The observed geographic disparities in diabetes among insured adults by census tract point to the importance of area socioeconomic status. Small-area studies can help health professionals design community-based programs for diabetes prevention and control.

Keywords

Prevalence; Obesity; Us; Disease

Physical Activity and the Built Environment in Residential Neighborhoods of Seoul and Seattle: An Empirical Study Based on Housewives’ GPS Walking Data and Travel Diaries

Park, Sohyun; Choi, Yeemyung; Seo, Hanlim; Moudon, Anne Vernez; Bae, C. -h. Christine; Baek, So-ra. (2016). Physical Activity and the Built Environment in Residential Neighborhoods of Seoul and Seattle: An Empirical Study Based on Housewives’ GPS Walking Data and Travel Diaries. Journal Of Asian Architecture And Building Engineering, 15(3), 471 – 478.

View Publication

Abstract

This paper is based on a collaborative pilot-study to ascertain the characteristic walking patterns and neighborhood features in residential areas of Seoul, Korea and Seattle, USA. As for sample sites, four case neighborhoods were selected: two from Seoul and two from in and outside of the Seattle-Shoreline areas. As for participants, thirty Korean housewives in Seoul and thirty Korean-American housewives in the Seattle area were selected respectively, and their socio-demographic characteristics, GPS records, and travel diary data for seven days were collected and analyzed. Considering the typical rainy seasons in the two cities, data collections, including the physical activity assessment by GPS devices, were carried out from May to June and from September to October in Seoul, and from July to October in Seattle during the year 2010. Noteworthy research findings include the following: Korean participants in Seoul walk about 2.6 km on average per day, while Korean-American participants in Seattle walk about 400m on average per day. In the case sites of Seoul, 75% of grocery shopping activities happen within the neighborhood by walking, while only 17% of those activities on foot happen in the case sites of Seattle. As for the most walking activity, about 70% of total walking amounts are related to utilitarian walking in Seoul sites, while 50% of total walking are related to recreational walking in Seattle sites. Recreational walking and utilitarian walking occur separately in Seattle sites, while the two walking types are often combined in Seoul sites, which also contribute to more walking amounts and farther walking distances in Seoul sites. This paper empirically confirms the widely held assumptions in part that residents in Seoul, a relatively high-density and high mixed-use city, walk more than those in Seattle, a relatively low-density and low mixed-use city. This paper also recognizes that in the case of both cities, more walking activities occur in the neighborhood built environment, where finely-grained street networks, small lots and blocks, various pedestrian destinations, public transit access, etc are provided in close connection. The amount and frequency of walking activities, as well as the fineness of neighborhood features, however, are remarkably different in the two cities, whose implications deserve in-depth exploration in further studies.

Keywords

Urban Design; Physical Activity; Neighborhood Environment; Objective Measures; Gps Walking Data; International Comparative Study

The Association between Park Facilities and the Occurrence of Physical Activity during Park Visits

Stewart, Orion Theodore; Moudon, Anne Vernez; Littman, Alyson; Seto, Edmund; Saelens, Brian E. (2018). The Association between Park Facilities and the Occurrence of Physical Activity during Park Visits. Journal Of Leisure Research, 49(3-5), 217 – 235.

View Publication

Abstract

Prior research has found a positive relationship between the variety of park facilities and park-based physical activity (PA) but has not provided an estimate of the effect that additional different PA facilities have on whether an individual is active during a park visit. Using objective measures of park visits and PA from an urban sample of 225 adults in King County, Washington, we compared the variety of PA facilities in parks visited where an individual was active to PA facilities in parks where the same individual was sedentary. Each additional different PA facility at a park was associated with a 6% increased probability of being active during a visit. Adding different PA facilities to a park appears to have a moderate effect on whether an individual is active during a park visit, which could translate into large community health impacts when scaled up to multiple park visitors.

Keywords

Accelerometer Data; Built Environment; Walking; Density; Health; Adults; Size; Gps; Attractiveness; Improvements; Measurement; Parks; Physical Activity; Quantitative Research; Urban Planning

Measurement of Neighborhood-Based Physical Activity Bouts

Duncan, Glen E.; Hurvitz, Philip M.; Moudon, Anne Vernez; Avery, Ally R.; Tsang, Siny. (2021). Measurement of Neighborhood-Based Physical Activity Bouts. Health & Place, 70.

View Publication

Abstract

This study examined how buffer type (shape), size, and the allocation of activity bouts inside buffers that delineate the neighborhood spatially produce different estimates of neighborhood-based physical activity. A sample of 375 adults wore a global positioning system (GPS) data logger and accelerometer over 2 weeks under free-living conditions. Analytically, the amount of neighborhood physical activity measured objectively varies substantially, not only due to buffer shape and size, but by how GPS-based activity bouts are identified with respect to containment within neighborhood buffers. To move the neighborhood-effects literature forward, it is critical to delineate the spatial extent of the neighborhood, given how different ways of measuring GPS-based activity containment will result in different levels of physical activity across different buffer types and sizes.

Keywords

Built Environment; Walking; Home; Accelerometry; Geographic Information Systems; Gps; Neighborhood; Physical Activity