Skip to content

Industry-Faculty-Student collaboration through the Applied Research Consortium

Owner of RDF Consulting Services and consultant for Turner Construction, Renzo di Furia, is working with Associate Dean for Research Carrie Sturts Dossick in supporting student-industry collaboration. “Applied Research Consortium brings together an interdisciplinary group of built environment firms with faculty experts and graduate student researchers at the University of Washington’s College of Built Environments (CBE) to address the most vexing challenges that firms face today.” A case study in applied research is highlighted in the article. 3D modeling was…

New Tool Created by CBE Researchers in partnership with Charles Pankow Foundation

CBE researchers worked with the Charles Pankow Foundation to develop a new Building Owner Assessment Tool (BOAT). Team members included CBE Dean Renée Cheng, FAIA; Associate Dean for Research Carrie Sturts Dossick, Ph.D, P.E.; and Laura Osburn, Ph.D. Other team members included Lingzi Wu, Ph.D. Daniel Dimitrov, and Xianxiang Sean Zhao. The tool was developed in partnership with the American Institute of Architects and the Integrated Project Delivery Alliance. The Building Owner Assessment Tool (BOAT): Helping You Understand Your Culture and Its…

Population Health Initiative awards multiple College of Built Environments teams planning grants

The Population Health Initiative announced 12 climate change planning grant awardees. Of those 12 teams, 4 include College of Built Environments researchers. Descriptions of their projects are below. Read the CBE News story here.   Linking Climate Adaptation and Public Health Outcomes in Yavatmal, Maharashtra Investigators Sameer H. Shah, Environmental and Forest Sciences Celina Balderas Guzmán, Landscape Architecture Pronoy Rai, Portland State University Project abstract This proposal collects primary interview data with landed and landless agriculturalists in Yavatmal district in…

Campus Sustainability Fund selects College of Built Environments researchers for 2022-2023 work

The Campus Sustainability Fund selected College of Built Environments PhD student Daniel Dimitrov, along with Associate Dean for Research Carrie Sturts Dossick, to receive funding for the project described below. Energy, Information, and the New Work of Building Operations in the Digital Age Amount Awarded: $19,833 Funding Received: 2022-2023 Project Summary: The built environment industry is in the midst of a data revolution paired with a drive for sustainable campus operations. Innovation, information, communication access, and integration provide an opportunity…

Immersive VR Versus BIM for AEC Team Collaboration in Remote 3D Coordination Processes

Asl, Bita Astaneh; Dossick, Carrie Sturts. (2022). Immersive VR Versus BIM for AEC Team Collaboration in Remote 3D Coordination Processes. Buildings, 12(10).

View Publication

Abstract

Building Information Modeling (BIM) and Virtual Reality (VR) are both tools for collaboration and communication, yet questions still exist as to how and in what ways these tools support technical communication and team decision-making. This paper presents the results of an experimental research study that examined multidisciplinary Architecture, Engineering, and Construction (AEC) team collaboration efficiency in remote asynchronous and synchronous communication methods for 3D coordination processes by comparing BIM and immersive VR both with markup tools. Team collaboration efficiency was measured by Shared Understanding, a psychological method based on Mental Models. The findings revealed that the immersive experience in VR and its markup tool capabilities, which enabled users to draw in a 360-degree environment, supported team communication more than the BIM markup tool features, which allowed only one user to draw on a shared 2D screenshot of the model. However, efficient team collaboration in VR required the members to properly guide each other in the 360-degree environment; otherwise, some members were not able to follow the conversations.

Keywords

Mental Models; Virtual-reality; Performance; Virtual Reality (vr); Building Information Modeling (bim); 3d Coordination; Clash Resolution; Remote Collaboration; Multidisciplinary Aec Team

Quantifying the Impact of Facilitation on Transactive Memory System Formation in Global Virtual Project Networks

Comu, Semra; Iorio, Josh; Taylor, John E.; Dossick, Carrie Sturts. (2013). Quantifying the Impact of Facilitation on Transactive Memory System Formation in Global Virtual Project Networks. Journal Of Construction Engineering & Management, 139(3), 294 – 303.

View Publication

Abstract

Building strong ties between geographically dispersed project participants is crucial to project success. In global project networks, many firms have adopted virtual collaboration tools to address the challenges imposed by temporal and geographical distance. Some researchers have examined the role of facilitators and found that process facilitation can improve collaboration. Research has also shown that facilitators can be drawn into content interactions, which may negatively impact collaboration effectiveness in virtual workspaces. Research to date has not quantified this negative impact. In this study, the formation and maintenance of transactive memory systems (TMS) in two facilitated and two nonfacilitated global virtual project networks were investigated, each executing a 2-month project. Using TMS formation and cohesive subgroup formation as a proxy for performance, quantitative evidence was found that demonstrates a negative impact on collaboration effectiveness when facilitators engage in content facilitation in virtual project networks. This paper shows that this negative impact restricts the establishment of TMSs. These findings have important implications for understanding and designing appropriate facilitator interactions in global virtual project networks. DOI: 10.1061/(ASCE)CO.1943-7862.0000610. (C) 2013 American Society of Civil Engineers.

Keywords

Globalisation; Groupware; International Collaboration; Production Engineering Computing; Project Management; Process Facilitation; Transactive Memory System Formation; Global Virtual Project Network; Virtual Collaboration Tool; Temporal Distance; Geographical Distance; Content Interaction; Virtual Workspace; Tms Cohesive Subgroup Formation; Content Facilitation; Knowledge Transfer; Group Cohesiveness; Group Cohesion; Performance; Teams; Models; Globalization; Networks; Project Networks; Social Network Analysis; Transactive Memory Systems; Virtual Teams

Guideline for Building Information Modeling in Construction Engineering and Management Education

Lee, Namhun; Dossick, Carrie S.; Foley, Sean P. (2013). Guideline for Building Information Modeling in Construction Engineering and Management Education. Journal Of Professional Issues In Engineering Education And Practice, 139(4), 266 – 274.

View Publication

Keywords

Buildings (structures); Computer Aided Instruction; Construction Industry; Educational Courses; Management Education; Structural Engineering Computing; Building Information Modeling; Construction Engineering And Management Education; Cem Education; Bim; Cem Curriculum

Where to Focus for Successful Adoption of Building Information Modeling within Organization

Won, Jongsung; Lee, Ghang; Dossick, Carrie; Messner, John. (2013). Where to Focus for Successful Adoption of Building Information Modeling within Organization. Journal Of Construction Engineering And Management, 139(11).

View Publication

Abstract

Suggestions abound for successful adoption of building information modeling (BIM); however, a company with limited resources cannot adopt them all. The factors that have top management priority for successful accomplishment of a task are termed critical success factors (CSFs). This paper aims to derive the CSFs for four questions commonly asked by companies in the first wave of BIM adoption: (1)What are the CSFs for adopting BIM in a company? (2)What are the CSFs for selecting projects to deploy BIM? (3)What are the CSFs for selecting BIM services? (4)What are the CSFs for selecting company-appropriate BIM software applications? A list of consideration factors was collected for each question, based on a literature review, and then refined through face-to-face interviews based on experiences of BIM experts. An international survey was conducted with leading BIM experts. From the 206 distributed surveys, 52 responses from four continents were collected. This study used quantitative data analysis to derive a manageable number (4-10) of CSFs for each category from dozens of anecdotal consideration factors. The derived CSFs are expected to be used as efficient metrics for evaluating and managing the level of BIM adoption and as a basis for developing BIM evaluation models in the future.

Keywords

Architectural Cad; Building Information Modeling; Bim; Critical Success Factors; Csf; Management; Building Information Models; Organizations; Computer Software; Building Information Modeling (bim); Critical Success Factor (csf); Organizational Strategy; Bim Software Application; Bim Service; Bim-assisted Project; Information Technologies

Messy Work in Virtual Worlds: Exploring Discovery and Synthesis in Virtual Teams

Dossick, Carrie Sturts(1). (2014). Messy Work in Virtual Worlds: Exploring Discovery and Synthesis in Virtual Teams. Lecture Notes In Computer Science (including Subseries Lecture Notes In Artificial Intelligence And Lecture Notes In Bioinformatics), 8683, 134 – 142.

View Publication

Abstract

The challenges of engineering team collaboration—establishing trust, fostering productive informal communication, cultivating knowledge exchange—are often exacerbated in virtual teams by geographical separation as well as team members’ cultural and linguistic differences. Researchers have observed that powerful collaboration in collocated teams is supported by shared visualizations with which the team engages in informal, flexible and active ways. In studying virtual team interactions in a virtual world known as the CyberGRID, we see that just as with AEC collocated teams, shared visualizations were instrumental for the teams as they define, understand, and generate knowledge when working on interrelated tasks. Emerging from this analysis is an empirically supported theory that while avatar-model interaction supports mutual discovery, more messy interactions of brainstorming, knowledge exchange and synthesis requires flexible, active, and informal shared visualizations. © Springer International Publishing Switzerland 2014.

Keywords

Communication; Flow Visualization; Information Technology; Knowledge Management; Visualization; Building Information Model; Bim; Collaboration; Geographical Separation; Global Virtual Teams; Informal Communication; Linguistic Differences; Virtual Team Interactions; Virtual Worlds

Messy Talk in Virtual Teams: Achieving Knowledge Synthesis through Shared Visualizations

Dossick, Carrie Sturts; Anderson, Anne; Azari, Rahman; Iorio, Josh; Neff, Gina; Taylor, John E. (2015). Messy Talk in Virtual Teams: Achieving Knowledge Synthesis through Shared Visualizations. Journal Of Management In Engineering, 31(1).

View Publication

Abstract

Engineering teams collaborating in virtual environments face many technical, social, and cultural challenges. In this paper we focus on distributed teams making joint unanticipated discoveries in virtual environments. We operationalize a definition of messy talk as a process in which teams mutually discover issues, critically engage in clarifying and finding solutions to the discovered issues, exchange their knowledge, and resolve the issue. Can globally distributed teams use messy talk via virtual communication technology? We analyzed the interactions of four distributed student teams collaborating on a complex design and planning project using building information models (BIMs) and the cyber-enabled global research infrastructure for design (CyberGRID), a virtual world specifically developed for collaborative work. Their interactions exhibited all four elements of messy talk, even though resolution was the least common. Virtual worlds support real-time joint problem solving by (1)providing affordances for talk mediated by shared visualizations, (2)supporting team perceptions of building information models that are mutable, and (3)allowing transformations of those models while people were together in real time. Our findings suggest that distributed team collaboration requires technologies that support messy talkand iterative trial and errorfor complex multidimensional problems. (C) 2014 American Society of Civil Engineers.

Keywords

Buildings (structures); Data Visualisation; Design; Grid Computing; Groupware; Knowledge Management; Structural Engineering Computing; Team Working; Virtual Manufacturing; Virtual Reality; Virtual Teams; Knowledge Synthesis; Engineering Teams Collaboration; Virtual Environments; Technical Challenges; Social Challenges; Cultural Challenges; Distributed Teams Making; Messy Talk; Knowledge Exchange; Globally Distributed Teams; Virtual Communication Technology; Distributed Student Teams; Design And Planning Project; Building Information Models; Bim; Cyber-enabled Global Research Infrastructure; Cybergrid; Virtual World; Collaborative Work; Team Perceptions; Iterative Trial And Error; Complex Multidimensional Problems; Visual Representations; Construction; Technology; Implementation; Collaboration; Communication; Teamwork; Digital Techniques; Knowledge-based Systems