In FY24, CBE researchers have been awarded a number of grants and contracts for projects that include a community engagement component, defined as “collaboration between institutions of higher education and their larger communities (local, regional/state, national, global) for the mutually beneficial creation and exchange of knowledge and resources in a context of partnership and reciprocity,” by The Carnegie Foundation for the Advancement of Teaching. In FY24 (July 2023 – June 2024), CBE researchers were awarded 17 grant and contract awards,…
Person: Chris Meek
Integrated Design Lab releases their 2023-2024 Annual Report
The Integrated Design Lab has released their 2023-2o24 Annual Report, available here. The Integrated Design Lab is lead by Christopher Meek and Heather Burpee. Christopher Meek is a Professor in the CBE Department of Architecture, and Director of the Integrated Design Lab. Heather Burpee is a Research Professor in the CBE Department of Architecture, and Director of Education and Outreach for the Integrated Design Lab.
Population Health Initiative awards 2 Climate Change Pilot Grants to CBE Researchers
Population Health Initiative awarded a Climate Change Pilot Grant to two teams that includes CBE researchers. Projects will begin January 2024, and were awarded $50,000. Read the full story here. Project title: “Sustainable metamaterials for insulation applications.” Project team: Eleftheria Roumeli, Materials Science & Engineering Tomás Méndez Echenagucia, Architecture Project abstract: Amidst an urgent global shift towards a circular economy, the demand for sustainable materials has reached a critical juncture. This transformation requires materials sourced from renewable sources, processed via…
Population Health Initiative awards multiple College of Built Environments teams planning grants
The Population Health Initiative announced 12 climate change planning grant awardees. Of those 12 teams, 4 include College of Built Environments researchers. Descriptions of their projects are below. Read the CBE News story here. Linking Climate Adaptation and Public Health Outcomes in Yavatmal, Maharashtra Investigators Sameer H. Shah, Environmental and Forest Sciences Celina Balderas Guzmán, Landscape Architecture Pronoy Rai, Portland State University Project abstract This proposal collects primary interview data with landed and landless agriculturalists in Yavatmal district in…
On the Tradeoffs between Embodied and Operational Carbon in Building Envelope Design: The Impact of Local Climates and Energy Grids
Méndez Echenagucia, T., Moroseos, T., & Meek, C. (2023). On the Tradeoffs between Embodied and Operational Carbon in Building Envelope Design: The Impact of Local Climates and Energy Grids. Energy and Buildings, 238.
Abstract
Embodied and operational carbon tradeoffs in building envelopes are studied. • Envelope variables include wall assemblies, WWRs, glazing and shading. • Energy decarbonization models are used to determine the 30-year operational carbon. • Results show the importance of a total carbon approach to envelope design. • Over or under insulation can result in waste of 10–150 kgCO 2 e/m2. The building envelope has a substantial influence on a building's life cycle operational and embodied carbon emissions. Window-to-wall ratios, wall assemblies, shading and glazing types, have been shown to have a significant impact on total emissions. This paper provides building designers, owners, and policy makers with actionable guidance and a prioritization framework for establishing co-optimized lifecycle carbon performance of facade assembly components in a broad spectrum of climate contexts and energy carbon intensities. A large parametric study of building envelopes is conducted using building performance simulation and cradle-to-gate embodied carbon calculations in 6 US cities. The authors derive the total carbon emissions optimization for commercial office and residential space types using standard code-reference models and open-source lifecycle data. Comparisons between optimal total carbon solutions and (i) optimal operational carbon and (ii) minimum required assemblies, show the impact of under and over investing in envelope-related efficiency measures for each climate. Results show how the relationship between embodied and operational carbon is highly localized, that optimal design variables can vary significantly. In low carbon intensity energy grids, over investment in envelope embodied carbon can exceed as 10 kgCO 2 e/m2, while under investment in high carbon intensity grids can be higher than 150 kgCO 2 e/m2.
Keywords
Building performance simulation; Embodied carbon; Operational carbon; Parametric modeling
On the Tradeoffs between Embodied and Operational Carbon in Building Envelope Design: The Impact of Local Climates and Energy Grids
Echenagucia, Tomas Mendez; Moroseos, Teresa; Meek, Christopher. (2023). On the Tradeoffs between Embodied and Operational Carbon in Building Envelope Design: The Impact of Local Climates and Energy Grids. Energy & Buildings, 278.
Abstract
The building envelope has a substantial influence on a building's life cycle operational and embodied car-bon emissions. Window-to-wall ratios, wall assemblies, shading and glazing types, have been shown to have a significant impact on total emissions. This paper provides building designers, owners, and policy makers with actionable guidance and a prioritization framework for establishing co-optimized lifecycle carbon performance of facade assembly components in a broad spectrum of climate contexts and energy carbon intensities. A large parametric study of building envelopes is conducted using building perfor-mance simulation and cradle-to-gate embodied carbon calculations in 6 US cities. The authors derive the total carbon emissions optimization for commercial office and residential space types using standard code-reference models and open-source lifecycle data. Comparisons between optimal total carbon solu-tions and (i) optimal operational carbon and (ii) minimum required assemblies, show the impact of under and over investing in envelope-related efficiency measures for each climate. Results show how the rela-tionship between embodied and operational carbon is highly localized, that optimal design variables can vary significantly. In low carbon intensity energy grids, over investment in envelope embodied carbon can exceed as 10 kgCO2e/m2, while under investment in high carbon intensity grids can be higher than 150 kgCO2e/m2.Published by Elsevier B.V.
Keywords
Facades; Building-integrated Photovoltaic Systems; Carbon Emissions; Carbon; Building Performance; Building Designers; Building Envelopes; Refuse Containers; Building Performance Simulation; Embodied Carbon; Operational Carbon; Parametric Modeling; Environmental-impact; Search
Evaluating Direct Energy Savings and Market Transformation Effects: A Decade of Technical Design Assistance in the Northwestern USA
Van Den Wymelenberg, Kevin; Brown, G. Z.; Burpee, Heather; Djunaedy, Ery; Gladics, Gunnar; Kline, Jeff; Loveland, Joel; Meek, Christopher; Thimmanna, Harshana. (2013). Evaluating Direct Energy Savings and Market Transformation Effects: A Decade of Technical Design Assistance in the Northwestern USA. Energy Policy, 52, 342 – 353.
Abstract
This paper documents the direct energy savings and energy efficiency market transformation impacts of a multi-state design assistance program in the northwestern US. The paper addresses four specific aims. (1) It provides a conservative and justified estimate of the direct energy savings associated with design assistance activities of a market transformation program from 2001 to 2010. (2) It provides a rigorous methodology to evaluate direct energy savings associated with design assistance market transformation programs. (3) It provides a low-cost replicable method to predict energy savings in new buildings by evaluating the integrated design process. (4) It provides quantitative indicators useful for estimating indirect energy savings from market transformation. Applying the recommended analysis method and assuming a 12-year measure life, the direct energy savings of the population (626 buildings; 51,262,000 ft(2)) is estimated as 453 aMW (average megawatts) (electric), and 265,738.089 therms (non-electric). If the entire program budget were divided into the electric savings only, the Lab Network cost per kWh saved ranged from $0.0016 to $0.003 using the recommended method and $0.0092/kWh using the most conservative method. These figures do not isolate contextual influences or represent total resource cost. Statistically significant correlations (r(2)=0.1-0.3) between integrated design scores and energy savings are reported. (C) 2012 Elsevier Ltd. All rights reserved.
Keywords
Programs; Sweden; Energy Efficiency; Market Transformation; Evaluation
Glareshade: A Visual Comfort-Based Approach to Occupant-Centric Shading Systems
Hashemloo, Alireza; Inanici, Mehlika; Meek, Christopher. (2016). Glareshade: A Visual Comfort-Based Approach to Occupant-Centric Shading Systems. Journal Of Building Performance Simulation, 9(4), 351 – 365.
Abstract
This paper presents a novel method for designing of an occupant-centric shading algorithm that utilizes visual comfort metric as the form-generating criteria. Based on the premise of previous studies that demonstrate glare as the most important factor for operating shading devices, GlareShade is introduced as a simulation-based shading methodology driven by occupant's visual comfort. GlareShade not only responds to changing outdoor conditions such as the movement of the sun and the variation of cloud cover, but it also accounts for building specific local conditions. GlareShade draws its strength and flexibility from an occupant-centric approach that is based on the visual field of view of each occupant as the occupant is performing common visual tasks in a given environment, and the developed shading system is linked to a distributed sensing network of multiple occupants. ShadeFan is demonstrated as a proof-of-concept dynamic shading system utilizing the GlareShade method.
Keywords
Control Strategies; Design Tool; Daylight; Patterns; Offices; Blinds; Model; Occupant-centric Shading System; Glare; Daylighting; Visual Comfort
Lighting Energy Consumption in Ultra-Low Energy Buildings: Using a Simulation and Measurement Methodology to Model Occupant Behavior and Lighting Controls
Zhu, Panyu; Gilbride, Michael; Yan, Da; Sun, Hongshan; Meek, Christopher. (2017). Lighting Energy Consumption in Ultra-Low Energy Buildings: Using a Simulation and Measurement Methodology to Model Occupant Behavior and Lighting Controls. Building Simulation, 10(6), 799 – 810.
Abstract
As building owners, designers, and operators aim to achieve significant reductions in overall energy consumption, understanding and evaluating the probable impacts of occupant behavior becomes a critical component of a holistic energy conservation strategy. This becomes significantly more pronounced in ultra-efficient buildings, where system loads such as heating, cooling, lighting, and ventilation are reduced or eliminated through high-performance building design and where occupant behavior-driven impacts reflect a large portion of end-use energy. Further, variation in behavior patterns can substantially impact the persistence of any performance gains. This paper describes a methodology of building occupant behavior modeling using simulation methods developed by the Building Energy Research Center (BERC) at Tsinghua University using measured energy consumption data collected by the University of Washington Integrated Design Lab (UW IDL). The Bullitt Center, a six-story 4831 m(2) (52,000 ft(2)) net-positive-energy urban office building in Seattle, WA, USA, is one of the most energy-efficient buildings in the world (2013 WAN Sustainable Building of the Year Winner). Its measured energy consumption in 2015 was approximately 34.8 kWh/(m(2)a (TM) yr) (11 kBtu/(ft(2)a (TM) yr)). Occupant behavior exerts an out-sized influence on the energy performance of the building. Nearly 33% of the end-use energy consumption at the Bullitt Center consists of unregulated miscellaneous electrical loads (plug-loads), which are directly attributable to occupant behavior and equipment procurement choices. Approximately 16% of end-use energy is attributable to electric lighting which is also largely determined by occupant behavior. Key to the building's energy efficiency is employment of lighting controls and daylighting strategies to minimize the lighting load. This paper uses measured energy use in a 330 m(2) (3550 ft(2)) open office space in this building to inform occupant profiles that are then modified to create four scenarios to model the impact of behavior on lighting use. By using measured energy consumption and an energy model to simulate the energy performance of this space, this paper evaluates the potential energy savings based on different occupant behavior. This paper describes occupant behavior simulation methods and evaluates them using a robust dataset of 15 minute interval sub-metered energy consumption data. Lighting control strategies are compared via simulation results, in order to achieve the best match between occupant schedules, controls, and energy savings. Using these findings, we propose a simulation methodology that incorporates measured energy use data to generate occupant schedules and control schemes with the ultimate aim of using simulation results to evaluate energy saving measures that target occupant behavior.
Keywords
Control-systems; Patterns; Offices; Lighting Control; Ultra-low Energy Building; Occupant Behavior; Building Simulation; Energy Consumption
College of Built Environments’ unique Inspire Fund aims to foster research momentum in underfunded pursuits college-wide. And it’s working.
Launching the Inspire Fund: An early step for CBE’s Office of Research “For a small college, CBE has a broad range of research paradigms, from history and arts, to social science and engineering.” — Carrie Sturts Dossick, Associate Dean of Research Upon taking on the role of Associate Dean of Research, Carrie Sturts Dossick, professor in the Department of Construction Management, undertook listening sessions to learn about the research needs of faculty, staff and students across the College of Built…