Kim, M., Zhao, X., Kim, Y.-W., & Rhee, B.-D. (2023). Blockchain-enabled supply chain coordination for off-site construction using Bayesian theory for plan reliability. Automation in Construction, 155, 105061–. https://doi.org/10.1016/j.autcon.2023.105061
View Publication
Abstract
The potential of blockchain is being widely explored within the construction industry, particularly for transparent communication and information sharing. However, only limited research has focused on implementing blockchain to address the challenge of aligning conflicting interests among independent agents, specifically, supply chain coordination. This paper develops a blockchain-enabled supply chain coordination system that facilitates the alignment of diverse decisions made by stakeholders in an off-site construction supply chain. To achieve this goal, Bayesian updating is employed to estimate the probabilistic distribution of plan reliability, enabling the calculation of a supplier rebate that incentivizes the contractor to schedule deliveries aimed at minimizing joint supply chain costs. Additionally, the paper describes a blockchain-enabled system that allows practitioners to measure plan reliability. The research findings demonstrate that the blockchain-enabled supply chain coordination system fosters shared common knowledge among project stakeholders and facilitates real-time updates of changes in the contractor's plan reliability, aligning the interests of both the supplier and contractor.
Keywords
Supply chain coordination; Bayesian updating; Plan reliability; Rebate pricing; Blockchain; Smart contracts; Off-site construction
Kim, Minju & Lee, Dongmin. (2023). Automated two-dimensional geometric model reconstruction from point cloud data for construction quality inspection and maintenance. Automation in Construction, 154. https://doi.org/10.1016/j.autcon.2023.105024.
View Publication
Abstract
Despite the availability of 3D digital models, 2D floor plans remain extensively used for quality inspection and maintenance as they offer firsthand information. While laser scanners enable efficient capture and reconstruction of real-world scenes, challenges arise in accurately extracting building geometry from laser scanning data due to the loss of geometric features. This paper describes a method for accurately reconstructing 2D geometric drawings of built facilities using laser scanning data. These techniques involve transforming the dimension of 3D data into 2D and displaying the registered data as pixels to extract solid lines that represent wall structures. By employing dimensionality transformation and pixelation techniques, the method supports reliable quality inspection and maintenance processes, overcoming the challenges of extracting precise geometry from laser scanning data. This paper contributes to the automated extraction of geometric features from point clouds and inspires the future development of fully automated 2D CAD and 3D BIM in alignment with Scan-to-BIM.
Ahn, H., Lee, C., Kim, M., Kim, T., Lee, D., Kwon, W., & Cho, H. (2023). Applicability of smart construction technology: Prioritization and future research directions. Automation in Construction., 153. https://doi.org/10.1016%2Fj.autcon.2023.104953
View Publication
Abstract
The potential for facilitating faster, safer, and more sustainable construction processes through the adoption of smart construction technologies is widely recognized. However, the limited adoption of these technologies in construction projects highlights the significance of identifying the technological needs of major stakeholders and the prioritization of research and development investment. In this study, the quality function deployment technique is employed to extract and prioritize the required technologies (RTs) from various stakeholders, while a thematic literature review is conducted to identify challenges and future research directions. The findings improve the efficiency of resource allocation, allowing policymakers to strategically address pressing issues. This can facilitate collaboration and communication among researchers, stakeholders, and the wider community, fostering a shared vision and understanding of future research goals and outcome. Prioritizing smart construction technologies can enhance their applicability. The top nine of technologies were prioritized by using quality function deployment. Thematic review was conducted for each of the top nine technologies. The challenges and future research directions were presented by review.
Keywords
Fourth industrial revolution (4IR); Prioritization; Quality function deployment (QFD); Smart construction technologies; Technology innovation
Affiliate Instructor, Construction Management