Skip to content

Population Health Initiative awards multiple College of Built Environments teams planning grants

The Population Health Initiative announced 12 climate change planning grant awardees. Of those 12 teams, 4 include College of Built Environments researchers. Descriptions of their projects are below. Read the CBE News story here.   Linking Climate Adaptation and Public Health Outcomes in Yavatmal, Maharashtra Investigators Sameer H. Shah, Environmental and Forest Sciences Celina Balderas Guzmán, Landscape Architecture Pronoy Rai, Portland State University Project abstract This proposal collects primary interview data with landed and landless agriculturalists in Yavatmal district in…

Plywood on steroids: CBE experiments with building materials for a sustainable future

Complex structures jointed like origami. Office walls and ceilings that swoop and bend over enormous open spaces. Experimental pavilions made with robotic fabrication techniques. This is a world of architecture made possible by mass-timber framing. And, it’s a world that’s becoming more environmentally and acoustically sound through the work of UW College of Built Environments, Department of Architecture Assistant Professor Tomás Méndez Echenagucia, UW Master of Science in Architecture/Design Technology student Nathan Brown, and other collaborators. Mass timber is a…

On the Tradeoffs between Embodied and Operational Carbon in Building Envelope Design: The Impact of Local Climates and Energy Grids

‌Méndez Echenagucia, T., Moroseos, T., & Meek, C. (2023).  On the Tradeoffs between Embodied and Operational Carbon in Building Envelope Design: The Impact of Local Climates and Energy Grids. Energy and Buildings, 238.

View Publication.

Abstract

Embodied and operational carbon tradeoffs in building envelopes are studied. • Envelope variables include wall assemblies, WWRs, glazing and shading. • Energy decarbonization models are used to determine the 30-year operational carbon. • Results show the importance of a total carbon approach to envelope design. • Over or under insulation can result in waste of 10–150 kgCO 2 e/m2. The building envelope has a substantial influence on a building's life cycle operational and embodied carbon emissions. Window-to-wall ratios, wall assemblies, shading and glazing types, have been shown to have a significant impact on total emissions. This paper provides building designers, owners, and policy makers with actionable guidance and a prioritization framework for establishing co-optimized lifecycle carbon performance of facade assembly components in a broad spectrum of climate contexts and energy carbon intensities. A large parametric study of building envelopes is conducted using building performance simulation and cradle-to-gate embodied carbon calculations in 6 US cities. The authors derive the total carbon emissions optimization for commercial office and residential space types using standard code-reference models and open-source lifecycle data. Comparisons between optimal total carbon solutions and (i) optimal operational carbon and (ii) minimum required assemblies, show the impact of under and over investing in envelope-related efficiency measures for each climate. Results show how the relationship between embodied and operational carbon is highly localized, that optimal design variables can vary significantly. In low carbon intensity energy grids, over investment in envelope embodied carbon can exceed as 10 kgCO 2 e/m2, while under investment in high carbon intensity grids can be higher than 150 kgCO 2 e/m2.

Keywords

Building performance simulation; Embodied carbon; Operational carbon; Parametric modeling

On the Tradeoffs between Embodied and Operational Carbon in Building Envelope Design: The Impact of Local Climates and Energy Grids

Echenagucia, Tomas Mendez; Moroseos, Teresa; Meek, Christopher. (2023). On the Tradeoffs between Embodied and Operational Carbon in Building Envelope Design: The Impact of Local Climates and Energy Grids. Energy & Buildings, 278.

View Publication

Abstract

The building envelope has a substantial influence on a building's life cycle operational and embodied car-bon emissions. Window-to-wall ratios, wall assemblies, shading and glazing types, have been shown to have a significant impact on total emissions. This paper provides building designers, owners, and policy makers with actionable guidance and a prioritization framework for establishing co-optimized lifecycle carbon performance of facade assembly components in a broad spectrum of climate contexts and energy carbon intensities. A large parametric study of building envelopes is conducted using building perfor-mance simulation and cradle-to-gate embodied carbon calculations in 6 US cities. The authors derive the total carbon emissions optimization for commercial office and residential space types using standard code-reference models and open-source lifecycle data. Comparisons between optimal total carbon solu-tions and (i) optimal operational carbon and (ii) minimum required assemblies, show the impact of under and over investing in envelope-related efficiency measures for each climate. Results show how the rela-tionship between embodied and operational carbon is highly localized, that optimal design variables can vary significantly. In low carbon intensity energy grids, over investment in envelope embodied carbon can exceed as 10 kgCO2e/m2, while under investment in high carbon intensity grids can be higher than 150 kgCO2e/m2.Published by Elsevier B.V.

Keywords

Facades; Building-integrated Photovoltaic Systems; Carbon Emissions; Carbon; Building Performance; Building Designers; Building Envelopes; Refuse Containers; Building Performance Simulation; Embodied Carbon; Operational Carbon; Parametric Modeling; Environmental-impact; Search

A Performance-based Optimization Approach For Diffusive Surface Topology Design

Shtrepi, Louena; Echenagucia, Tomás Méndez; Badino, Elena; Astolfi, Arianna. (2021). A Performance-based Optimization Approach For Diffusive Surface Topology Design. Building Acoustics, 28(3), 231 – 247.

View Publication

Abstract

Different numerical techniques have been used in the last decades for the acoustic characterization and performance optimization of sound diffusive surfaces. However, these methods require very long calculation times and do not provide a rapid feedback. As a result, these methods can hardly be applied by designers at early stages of the design process, when successive design iterations are necessary from an aesthetic point of view. A suitable alternative could be the use of parametric modeling in combination with performance investigations during the design process of sound diffusive surfaces. To this aim, this study presents a design process for diffusive surfaces topology optimization based on the combination of parametric models and geometrical acoustic simulations. It aims to provide architects and designers with rapid visual feedback on acoustic performances at a preliminary stage of the design process. The method has been tested on different case studies, which have been modelled based on geometric guidelines for diffusive surface optimization. The sensitivity of the method showed that it could be a very useful tool for comparisons among surface design alternatives. Finally, the advantages and limitations of the integrated optimization in comparison with conventional optimizations are discussed.

Keywords

Acoustic Performance; Room Acoustics; Scattering; Coefficients; Accuracy; Field; Simulations; Diffusion; Surface Optimization; Performance-based Design

A Three-Dimensional Approach to the Extended Limit Analysis of Reinforced Masonry

Roca, Pere; Liew, Andrew; Block, Philippe; Lopez, David Lopez; Echenagucia, Tomás Méndez; Van Mele, Tom. (2022). A Three-Dimensional Approach to the Extended Limit Analysis of Reinforced Masonry. Structures, 35, 1062 – 1077.

View Publication

Abstract

The Extended Limit Analysis of Reinforced Masonry (ELARM) is a simple and user-friendly method for the design and structural analysis of singly-curved, reinforced tile vaults [1]. It is based on limit analysis but takes into account the reinforcement's contribution to the composite cross-section's bending capacity.& nbsp;A three-dimensional approach to ELARM is presented in this paper. The theoretical framework to understand the implications and limitations of extending ELARM to fully 3D structures is described, together with the strategies to carry out the leap from 2D to 3D. This extension is a lower-bound approach for the design of reinforced masonry, reinforced concrete and concrete-masonry composite shells and the assessment of their strength and stability against external loading.& nbsp;The new, extended method is implemented computationally to speed up the iterative processes, provide quick structural feedback, offer immediate results and allow for user-interactive form-finding and optimisation procedures. Different applications of the developed tool are described through the presentation of examples, including reinforcement optimisation, a form-finding process and a case with a shape beyond funicular geometry.

Keywords

Tile Vault; Masonry; Reinforced Brick; Formwork; Concrete Shells; Limit Analysis; Thrust Network Analysis; Extended Limit Analysis Of Reinforced Masonry; Tile Vaults

Design Of Broadband Helmholtz Resonator Arrays Using The Radiation Impedance Method.

Rajendran, Vidhya; Piacsek, Andy; Méndez Echenagucia, Tomás. (2022). Design Of Broadband Helmholtz Resonator Arrays Using The Radiation Impedance Method. Journal Of The Acoustical Society Of America, 151(1), 457 – 466.

View Publication

Abstract

This paper describes the design process of a low-frequency sound absorptive panel composed of differently tuned Helmholtz resonators (HRs), considering size and fabrication constraints relevant for applications in the building sector. The paper focuses on cylindrical and spiral resonators with embedded necks that are thin and can achieve high absorption. the mutual interaction between the resonators was modeled based on the radiation impedance method and it plays a key component in enhancing the absorption performance of the array. The differential evolution search algorithm was used to design the resonators and modify their mutual interaction to derive the absorption performance of multiple HR arrays for comparison. Optimizations to the resonator configuration and the neck resistance were implemented to produce a unit panel that has a broadband absorption performance with emphasis on the low to mid frequencies and is thin and light in weight. Unit panels with dimensions of 20 cm x 20 cm , consisting of 29 cylindrical HRs designed to absorb in the 25–900 Hz frequency range, were constructed and tested in a custom-built impedance tube. The measured absorption performance of these panels is consistent with the theoretical predictions. [ABSTRACT FROM AUTHOR]; Copyright of Journal of the Acoustical Society of America is the property of American Institute of Physics and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Keywords

Helmholtz Resonators; Differential Evolution; Search Algorithms; Radiation; Structural Optimization; Resonators; Bandpass Filters

Carbon Leadership Forum awarded ARPA-E grant to develop life cycle assessment tools for carbon negative buildings 

ARPA-E announced $5 million in funding to two universities—the University of Washington and University of California, Davis—working to develop life cycle assessment tools and frameworks associated with transforming buildings into net carbon storage structures. The funding is part of the Harnessing Emissions into Structures Taking Inputs from the Atmosphere (HESTIA) Exploratory Topic. Parametric Open Data for Life Cycle Assessment (POD | LCA) – $3,744,303 The University of Washington’s Carbon Leadership Forum will develop a rigorous and flexible parametric Life Cycle Assessment (LCA)…

PhD in the Built Environment

The College of Built Environments consists of five departments that together provide one of the country’s few comprehensive built environment programs within one academic unit: Architecture, Construction Management, Landscape Architecture, Real Estate, and Urban Design and Planning. Together, this combination of departments enable faculty and students to engage almost the entire development process, from economic and environmental planning, real estate, regulatory processes, siting and design, through actual financing and construction, to facility management and adaptive reuse in subsequent stages. Thus, the college is inherently multi-disciplinary, not only in terms of the dimensions of reality that it treats, but also in regard to the specialized disciplines, methods, and practices that it employs: history, theory, cultural criticism, engineering, design, planning, urban design, energy sciences, acoustics, lighting, environmental psychology, ecology, real estate analysis, statistics, management, horticulture, soil science, law, public policy, and ethics. In addition, because of the College’s focus on comprehensive analysis and practice concerning the built environment and its interrelation with society, it is substantially engaged in interdisciplinary work with other units on campus and outside of the campus, including mechanical, civil, and electrical engineering; with public policy and the health sciences; with art and art history; with textual interpretation in the humanities; with many of the computing and digitization activities that range from digital arts to the information school and technical communications; with education and social studies and services; with sustainability and ecological programs, including urban ecology, geography, the College of Forest Resources (especially urban horticulture and urban forestry), and Ocean Science and Fisheries; with environmental and land use law.

The College’s interdisciplinary character is a good fit with the emerging trends in today’s complex world, where only a pluralistic and collaborative approach will generate the necessary learning and teaching, research, and service. If we are to provide, in the end, both disciplinary and professional means to promote environmental well-being, the diverse environmental specializations must be fully integrated. Thus, working outside traditional disciplinary and departmental categories, the College’s faculty will advance solutions to problems that demand interdisciplinary perspectives and expertise. Other UW units bring much to bear on the built environment and students are wholeheartedly encouraged to explore possible cross-campus connections both in obvious and seemingly unlikely places. The Technology and Project Design/Delivery specialization especially connects with Psychology, the Information School, Technical Communication, Computer Science and Engineering, and Industrial Engineering; the Sustainable Systems and Prototypes field with Civil Engineering, Electrical Engineering, Industrial Engineering, Mechanical Engineering, the Information School, Technical Communication, the College of Forest Resources (especially Eco-System Science and Conservation, Urban Horticulture and Urban Forestry), the Evans School of Public Affairs, Geography, Public Health, Ocean Science and Fisheries, and Social Work, Urban Ecology, and perhaps Advanced Materials and Manufacturing Processes and Nanotechnology; the area of History, Theory, and Representation with Textual Studies, Art History, Interdisciplinary Arts & Sciences at Tacoma, and Comparative History of Ideas.

Applied Research Consortium

The Applied Research Consortium (ARC) is rooted in the idea that collaboration across academia and industry will accelerate progress in our fields. ARC brings together an interdisciplinary group of built environment firms with faculty experts and graduate student researchers at the University of Washington’s College of Built Environments (CBE) to address the most vexing challenges that firms face today. The next generation of practitioners and scholars apply their creativity and knowledge of the latest scholarship and practices, accelerating progress and preparing for future work at the leading edge of our fields.

Through the ARC initiative, built environment firms with a presence in the Seattle area partner with College of Built Environments graduate students and faculty for research that is targeted at the specific needs of the firms. Firms work with faculty to shape research priorities for the consortium based on their needs and the latest research in our fields. ARC then matches graduate student fellows with firms for multi-quarter applied research projects that directly relate to the firms’ current work. Faculty mentors and supervisors at firms work with the fellows, contributing to their academic and professional development in the program and ensuring that the projects fit with longer term research goals.

The unique set of fields under the College of Built Environments umbrella—architecture, construction management, landscape architecture, real estate, and urban design and planning—allows ARC projects to leverage creative, interdisciplinary approaches to the most vexing problems that firms–and the disciplines themselves–face today.

ARC builds on CBE’s prioritization of equity and diversity, thus ensuring that the next generation of built environments practitioners and scholars bring the broadest possible range of perspectives and experiences to their work.