Ochsner, Jeffrey Karl. (2017). The Past and Future of Pioneer Square Historic Character and Infill Construction in Seattle’s First Historic District. Change Over Time-an International Journal Of Conservation And The Built Environment, 7(2), 320 – 343.
View Publication
Abstract
Seattle designated the Pioneer Square Preservation District, the city's first historic district, nearly fifty years ago. Over the past half century, the district has seen significant infrastructure improvements, a changing resident population, and an evolving mix of businesses. Although many buildings underwent interior alteration, the visible external character of the historic fabric has remained largely intact. The district's Preservation Board reviews a constant stream of small exterior restoration and rehabilitation projects, but it is the relatively few examples of new infill construction that have presented the most challenging questions as the board has had to balance the desire for new development and the activity it brings with the wish to protect historic character. Although the Pioneer Square District ordinance, the Secretary of Interior's Standards, and rules developed by the board all offer guidance, every new design presents questions about the exact meaning of terms like compatible and differentiated. Today, with Seattle's booming economy and growing population, more new projects of a larger scale are being proposed. As a result, the Pioneer Square Preservation District presents a singular case study demonstrating continuing efforts to protect the historic built environment while still allowing appropriate growth.
Ianchenko, Alex; Simonen, Kathrina; Barnes, Clayton. (2020). Residential Building Lifespan and Community Turnover. Journal Of Architectural Engineering, 26(3).
View Publication
Abstract
Environmental impact studies within the built environment rely on predicting building lifespan to describe the period of occupation and operation. Most life cycle assessments (LCAs) are based on arbitrary lifespan values, omitting the uncertainties of assessing service life. This research models the lifespan of American residential housing stock as a probabilistic survival distribution based on available data from the American Housing Survey (AHS). The log-normal, gamma, and Weibull distributions were fit to demolition data from 1985 to 2009 and these three models were compared with one another using the Bayesian information criterion. Analysis revealed that the estimated average housing lifespan in the United States is 130 years given model assumptions, although a probabilistic approach to lifespan can yield higher accuracy on a case-by-case basis. Parameters for modeling housing lifespan as log-normal, gamma, and Weibull survival functions are published with the intent of further application in LCA. The application of probabilistic housing lifespan models to community-wide turnover and integration with existing simulations of natural disaster are proposed as potential ways to achieve community sustainability and resilience goals. (c) 2020 American Society of Civil Engineers.
Keywords
Energy-consumption; Service Life; Cycle; Demolition; Emissions; Design; Impact; Model; Housing Stock Lifetime; Residential Buildings; Housing Turnover; Life Cycle Assessment; Service Life Prediction
Ochsner, Jeffrey Karl; Rash, David A. (2012). The Emergence of Naramore, Bain, Brady & Johanson and the Search for Modern Architecture in Seattle, 1945-1950. Pacific Northwest Quarterly, 103(3), 123 – 141.
Zhu, Panyu; Gilbride, Michael; Yan, Da; Sun, Hongshan; Meek, Christopher. (2017). Lighting Energy Consumption in Ultra-Low Energy Buildings: Using a Simulation and Measurement Methodology to Model Occupant Behavior and Lighting Controls. Building Simulation, 10(6), 799 – 810.
View Publication
Abstract
As building owners, designers, and operators aim to achieve significant reductions in overall energy consumption, understanding and evaluating the probable impacts of occupant behavior becomes a critical component of a holistic energy conservation strategy. This becomes significantly more pronounced in ultra-efficient buildings, where system loads such as heating, cooling, lighting, and ventilation are reduced or eliminated through high-performance building design and where occupant behavior-driven impacts reflect a large portion of end-use energy. Further, variation in behavior patterns can substantially impact the persistence of any performance gains. This paper describes a methodology of building occupant behavior modeling using simulation methods developed by the Building Energy Research Center (BERC) at Tsinghua University using measured energy consumption data collected by the University of Washington Integrated Design Lab (UW IDL). The Bullitt Center, a six-story 4831 m(2) (52,000 ft(2)) net-positive-energy urban office building in Seattle, WA, USA, is one of the most energy-efficient buildings in the world (2013 WAN Sustainable Building of the Year Winner). Its measured energy consumption in 2015 was approximately 34.8 kWh/(m(2)a (TM) yr) (11 kBtu/(ft(2)a (TM) yr)). Occupant behavior exerts an out-sized influence on the energy performance of the building. Nearly 33% of the end-use energy consumption at the Bullitt Center consists of unregulated miscellaneous electrical loads (plug-loads), which are directly attributable to occupant behavior and equipment procurement choices. Approximately 16% of end-use energy is attributable to electric lighting which is also largely determined by occupant behavior. Key to the building's energy efficiency is employment of lighting controls and daylighting strategies to minimize the lighting load. This paper uses measured energy use in a 330 m(2) (3550 ft(2)) open office space in this building to inform occupant profiles that are then modified to create four scenarios to model the impact of behavior on lighting use. By using measured energy consumption and an energy model to simulate the energy performance of this space, this paper evaluates the potential energy savings based on different occupant behavior. This paper describes occupant behavior simulation methods and evaluates them using a robust dataset of 15 minute interval sub-metered energy consumption data. Lighting control strategies are compared via simulation results, in order to achieve the best match between occupant schedules, controls, and energy savings. Using these findings, we propose a simulation methodology that incorporates measured energy use data to generate occupant schedules and control schemes with the ultimate aim of using simulation results to evaluate energy saving measures that target occupant behavior.
Keywords
Control-systems; Patterns; Offices; Lighting Control; Ultra-low Energy Building; Occupant Behavior; Building Simulation; Energy Consumption
Liu, Yue; Colburn, Alex; Inanici, Mehlika. (2020). Deep Neural Network Approach for Annual Luminance Simulations. Journal Of Building Performance Simulation, 13(5), 532 – 554.
View Publication
Abstract
Annual luminance maps provide meaningful evaluations for occupants' visual comfort and perception. This paper presents a novel data-driven approach for predicting annual luminance maps from a limited number of point-in-time high-dynamic-range imagery by utilizing a deep neural network. A sensitivity analysis is performed to develop guidelines for determining the minimum and optimum data collection periods for generating accurate maps. The proposed model can faithfully predict high-quality annual panoramic luminance maps from one of the three options within 30 min training time: (i) point-in-time luminance imagery spanning 5% of the year, when evenly distributed during daylight hours, (ii) one-month hourly imagery generated during daylight hours around the equinoxes; or (iii) 9 days of hourly data collected around the spring equinox, summer and winter solstices (2.5% of the year) all suffice to predict the luminance maps for the rest of the year. The DNN predicted high-quality panoramas are validated against Radiance renderings.
Keywords
Scattering Distribution-functions; Daylight Performance; Glare; Model; Prediction; Daylighting Simulation; Luminance Maps; Machine Learning; Neural Networks; Hdr Imagery; Panoramic View
Chalana, Manish; Sprague, Tyler S. (2013). Beyond Le Corbusier and the Modernist City: Reframing Chandigarh’s ‘World Heritage’ Legacy. Planning Perspectives, 28(2), 199 – 222.
View Publication
Abstract
The heritage of Chandigarh, India is a complex subject. While widely acknowledged by academic and professional communities worldwide as a significant work of modernist architecture and urban design, Chandigarh's specific temporal, geographical and cultural contexts complicate efforts to get the city inscribed on United Nations Educational, Scientific, and Cultural Organization's World Heritage List. This article outlines the persistent attempts by both local and international organizations to achieve this inscription, efforts that have not yet been successful. Relying on historical scholarship and fieldwork, the authors reassess the value of Chandigarh's heritage both in terms of historical significance and contemporary planning. By addressing the complexity and scope of the design and planning process, embracing the inhabitation and appropriation of the city, and fostering an appreciation of modern architecture, Chandigarh can develop a more localized understanding of heritage yet one that can be appreciated worldwide.
Keywords
World Heritage Sites; Historic Sites; Modern Architecture; Urban Planning; Architecture; Modern Movement (architecture); Preservation Of Historic Sites; Twentieth Century; Chandigarh (india); India; Chandigarh; Le Corbusier; Modern Heritage; Preservation Planning; Unesco; World Heritage List; Le Corbusier, 1887-1965
Dannenberg, Andrew L.; Burpee, Heather. (2018). Architecture for Health Is Not Just for Healthcare Architects. Health Environments Research & Design Journal (herd) (sage Publications, Ltd.), 11(2), 8 – 12.
View Publication
Keywords
Building Design & Construction; Public Health; Quality Of Life; Built Environment; Public Spaces
Parsaee, Mojtaba; Demers, Claude M. H.; Lalonde, Jean-francois; Potvin, Andre; Inanici, Mehlika; Hebert, Marc. (2020). Human-Centric Lighting Performance of Shading Panels in Architecture: A Benchmarking Study with Lab Scale Physical Models Under Real Skies. Solar Energy, 204, 354 – 368.
View Publication
Abstract
This study investigates shading panels' (SPs) impacts on daylighting features in a lab scale model in terms of parameters representing potential human eyes' biological responses identified as image forming (IF) and non-image forming (NIF). IF responses enable vision and NIF responses regulate internal body clocks known as circadian clocks. Human-centric lighting evaluates photopic units, representing IF responses, and melanopic units representing NIF responses, combined with correlated color temperature (CCT) of light for potential biological effects. SPs' impacts on such parameters of daylighting have not yet been studied. Previous research mostly studied panels' impacts on visual comfort and glare related to IF responses. This research explores the impact of SPs' color, reflectance, orientation, and openness on photopic and melanopic units and CCT of daylighting inside a 1:50 physical scale model of a space. Approximately 40 prototypes of SPs were evaluated. An experimental setup was designed under outdoor daylighting conditions to capture high dynamic range (HDR) images inside the model. HDR images were post processed to calculate and render the distribution of photopic and melanopic units, melanopic/photopic (M/P) ratios and CCTs in the captured viewpoint of the model. Results reveal the behavior of SPs' color, reflectance, orientation, and openness in modifying daylighting parameters related to biological responses. Bluish panels, in particular, increase daylighting melanopic units and CCTs whereas reddish panels increase photopic units and reduce CCTs. The research results were discussed to provide an outline for future developments of panels to adapt daylighting to occupants' IF and NIF responses.
Keywords
Models & Modelmaking; Shades & Shadows; Daylighting; Color Temperature; Benchmarking (management); Ecological Houses; Eye Tracking; Circadian Rhythms; Adaptive Design; Healthy Lighting; High Performance Façade; Photobiology; Responsive Building; Design; Sensitivity; Illuminance; Systems; Spaces; Impact; Glare; High Performance Facade; Reflectance; Scale Models; Biological Effects; Human Performance; Prototypes; Parameter Modification; Lighting; Shading; Eye (anatomy); Color; Parameter Identification; Light Effects; Panels; Mathematical Models; Images; Biological Clocks; Orientation
Sprague, Tyler S. (2013). Beauty, Versatility, Practicality: The Rise of Hyperbolic Paraboloids in Post-War America (1950-1962). Construction History-international Journal Of The Construction History Society, 28(1), 165 – 184.
Abstract
The hyperbolic paraboloid was relatively unknown in the United States prior to 1950 but, by 1962, it had gained widespread recognition and acceptance among practising and academic architects, structural engineers and builders. Aligning with the architectural trends and structural capabilities of the post-war era, hyperbolic paraboloids were used to construct everything from churches to warehouses and residences to gas stations. They could be constructed in many different ways and built with different materials including reinforced concrete, plywood and aluminium. The hyperbolic paraboloid became synonymous with innovation and experimentation in construction technology. This paper reviews the people and buildings that influenced the rise in popularity of the hyperbolic paraboloid forms, traces different construction practices used to build them in the post-war Americas, and tracks their emergence as a built form that characterised the American post-war era.
Keywords
Hyperbolic Paraboloid; Construction Innovation; Aluminium; Plywood; Concrete Construction; Formwork; Usa; 1950s
Mahankali, Ranjeeth; Johnson, Brian R.; Anderson, Alex T. (2018). Deep Learning in Design Workflows: The Elusive Design Pixel. International Journal Of Architectural Computing, 16(4), 328 – 340.
View Publication
Abstract
The recent wave of developments and research in the field of deep learning and artificial intelligence is causing the border between the intuitive and deterministic domains to be redrawn, especially in computer vision and natural language processing. As designers frequently invoke vision and language in the context of design, this article takes a step back to ask if deep learning's capabilities might be applied to design workflows, especially in architecture. In addition to addressing this general question, the article discusses one of several prototypes, BIMToVec, developed to examine the use of deep learning in design. It employs techniques like those used in natural language processing to interpret building information models. The article also proposes a homogeneous data format, provisionally called a design pixel, which can store design information as spatial-semantic maps. This would make designers' intuitive thoughts more accessible to deep learning algorithms while also allowing designers to communicate abstractly with design software.
Keywords
Associative Logic; Creative Processes; Deep Learning; Embedding Vectors; Bimtovec; Homogeneous Design Data Format; Design Pixel; Idea Persistence