Jeffrey Karl Ochsner; David A. Rash. (2017). Research Notes: Design for Mobility: Intercity Bus Terminals In The Puget Sound Region. Buildings & Landscapes: Journal Of The Vernacular Architecture Forum, 24(1), 67 – 91.
Department: Architecture
On the Tradeoffs between Embodied and Operational Carbon in Building Envelope Design: The Impact of Local Climates and Energy Grids
Echenagucia, Tomas Mendez; Moroseos, Teresa; Meek, Christopher. (2023). On the Tradeoffs between Embodied and Operational Carbon in Building Envelope Design: The Impact of Local Climates and Energy Grids. Energy & Buildings, 278.
Abstract
The building envelope has a substantial influence on a building's life cycle operational and embodied car-bon emissions. Window-to-wall ratios, wall assemblies, shading and glazing types, have been shown to have a significant impact on total emissions. This paper provides building designers, owners, and policy makers with actionable guidance and a prioritization framework for establishing co-optimized lifecycle carbon performance of facade assembly components in a broad spectrum of climate contexts and energy carbon intensities. A large parametric study of building envelopes is conducted using building perfor-mance simulation and cradle-to-gate embodied carbon calculations in 6 US cities. The authors derive the total carbon emissions optimization for commercial office and residential space types using standard code-reference models and open-source lifecycle data. Comparisons between optimal total carbon solu-tions and (i) optimal operational carbon and (ii) minimum required assemblies, show the impact of under and over investing in envelope-related efficiency measures for each climate. Results show how the rela-tionship between embodied and operational carbon is highly localized, that optimal design variables can vary significantly. In low carbon intensity energy grids, over investment in envelope embodied carbon can exceed as 10 kgCO2e/m2, while under investment in high carbon intensity grids can be higher than 150 kgCO2e/m2.Published by Elsevier B.V.
Keywords
Facades; Building-integrated Photovoltaic Systems; Carbon Emissions; Carbon; Building Performance; Building Designers; Building Envelopes; Refuse Containers; Building Performance Simulation; Embodied Carbon; Operational Carbon; Parametric Modeling; Environmental-impact; Search
Narjes Abbasabadi
Narjes Abbasabadi, Ph.D., is an Assistant Professor in the Department of Architecture at the University of Washington. Dr. Abbasabadi also leads the Sustainable Intelligence Lab. Abbasabadi’s research centers on sustainability and computation in the built environment. Much of her work focuses on advancing design research efforts through developing data-driven methods, workflows, and tools that leverage the advances in digital technologies to enable augmented intelligence in performance-based and human-centered design. With an emphasis on multi-scale exploration, her research investigates urban building energy flows, human systems, and environmental and health impacts across scales—from the scale of building to the scale of neighborhood and city.
Abbasabadi’s research has been published in premier journals, including Applied Energy, Building and Environment, Energy and Buildings, Environmental Research, and Sustainable Cities and Society. She received honors and awards, including “ARCC Dissertation Award Honorable Mention” (Architectural Research Centers Consortium (ARCC), 2020), “Best Ph.D. Program Dissertation Award” (IIT CoA, 2019), and 2nd place in the U.S. Department of Energy (DOE)’s Race to Zero Design Competition (DOE, 2018). In 2018, she organized the 3rd IIT International Symposium on Buildings, Cities, and Performance. She served as editor of the third issue of Prometheus Journal, which received the 2020 Haskell Award from AIA New York, Center for Architecture.
Prior to joining the University of Washington, she taught at the University of Texas at Arlington and the Illinois Institute of Technology. She also has practiced with several firms and institutions and led design research projects such as developing design codes and prototypes for low-carbon buildings. Most recently, she practiced as an architect with Adrian Smith + Gordon Gill Architecture (AS+GG), where she has been involved in major projects, including the 2020 World Expo. Abbasabadi holds a Ph.D. in Architecture from the Illinois Institute of Technology and Master’s and Bachelor’s degrees in Architecture from Tehran Azad University.
College of Built Environments’ Research Restart Fund Awards Four Grants in First of Two Cycles
The College of Built Environments launched a funding opportunity for those whose research has been affected by the ongoing pandemic. The Research Restart Fund, with awards up to $5,000, has awarded 4 grants in its first of two cycles. A grant was awarded to Real Estate faculty member Arthur Acolin, who is partnering with the City of Seattle’s Office of Planning and Community Development to understand barriers that homeowners, particularly those with lower incomes, face to building Accessory Dwelling Units…
Products of Place the Era of Reinforced-Concrete Skyscrapers in Seattle, 1921-1931
Sprague, Tyler S. (2015). Products of Place the Era of Reinforced-Concrete Skyscrapers in Seattle, 1921-1931. Pacific Northwest Quarterly, 106(3), 107 – 119.
Measuring Circadian Lighting through High Dynamic Range Photography
Jung, B.; Inanici, M. (2019). Measuring Circadian Lighting through High Dynamic Range Photography. Lighting Research & Technology, 51(5), 742 – 763.
Abstract
The human ocular system functions in a dual manner. While the most well-known function is to facilitate vision, a growing body of research demonstrates its role in resetting the internal body clock to synchronize with the 24-hour daily cycle. Most research on circadian rhythms is performed in controlled laboratory environments. Little is known about the variability of circadian light within the built and natural environments. Currently, very few specialized devices measure the circadian light, and they are not accessible to many researchers and practitioners. In this paper, tristimulus colour calibration procedures for high dynamic range photography are developed to measure circadian lighting. Camera colour accuracy is evaluated through CIE trichromatic (XYZ) measurements; and the results demonstrate a strong linear relationship between the camera recordings and a scientific-grade colorimeter. Therefore, it is possible to correct for the colour aberrations and use high dynamic range photographs to measure both photopic and circadian lighting values. Spectrophotometric measurements are collected to validate the methodology. Results demonstrate that measurements from high dynamic range photographs can correspond to the physical quantity of circadian luminance with reasonable precision and repeatability. Circadian data collected in built environments can be utilized to study the impact of design decisions on human circadian entrainment and to create guidelines and metrics for designing circadian friendly environments.
Keywords
Physical Constants; Medical Photography; Photography; Built Environment; Morningness-eveningness Questionnaire; Statistical Reliability; Circadian Rhythms; Action Spectrum; Ganglion-cells; Bright Light; Exposure; Sensitivity; Framework; Daylight; Daytime; Model; Rod
Protecting Neighbourhood Character While Allowing Growth? Pike/Pine Conservation Overlay District, Seattle, Washington. Planning Perspectives
Kuriyama, Naoko; Ochsner, Jeffrey Karl. (2021). Protecting Neighbourhood Character While Allowing Growth? Pike/Pine Conservation Overlay District, Seattle, Washington. Planning Perspectives, 36(6), 1195 – 1223.
Abstract
The City of Seattle created the Pike/Pine Conservation Overlay District in 2009 to preserve the character of the Pike/Pine Corridor (neighbourhood) while simultaneously accommodating substantial growth in the number of residents and the size of buildings. Pike/Pine is known for its adaptively reused collection of early twentieth century 'Auto Row' buildings and for the diversity of its population. Since the year 2000, proximity to downtown has made this area attractive for development, and the city has designated Pike/Pine as a growth centre in its comprehensive plan. The city's implementation of the Pike/Pine Conservation Overlay District (one of the first uses of a conservation district in a commercial/mixed-use neighbourhood in the United States) seeks to address the conflict inherent in accommodating growth while simultaneously trying to protect older architecture, small-scale local businesses, and a diverse mix of housing. This article analyses the elements and impacts of this unusual district, considering its application of facade retention for townscape conservation as well as analysing its broad approach within the framework of integrated conservation. This article argues that the Pike/Pine Conservation Overlay District offers a useful case study for other cities looking to support growth while also retaining elements of the past. [ABSTRACT FROM AUTHOR]; Copyright of Planning Perspectives is the property of Routledge and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Keywords
Pine; Neighborhoods; Urban Growth; Twentieth Century; Transportation Corridors; Seattle (wash.); Conservation District; Design Review; Facadism; Historic Preservation; Integrated Conservation; Overlay District; Pike/pine Corridor; Seattle; Washington
Glareshade: A Visual Comfort-Based Approach to Occupant-Centric Shading Systems
Hashemloo, Alireza; Inanici, Mehlika; Meek, Christopher. (2016). Glareshade: A Visual Comfort-Based Approach to Occupant-Centric Shading Systems. Journal Of Building Performance Simulation, 9(4), 351 – 365.
Abstract
This paper presents a novel method for designing of an occupant-centric shading algorithm that utilizes visual comfort metric as the form-generating criteria. Based on the premise of previous studies that demonstrate glare as the most important factor for operating shading devices, GlareShade is introduced as a simulation-based shading methodology driven by occupant's visual comfort. GlareShade not only responds to changing outdoor conditions such as the movement of the sun and the variation of cloud cover, but it also accounts for building specific local conditions. GlareShade draws its strength and flexibility from an occupant-centric approach that is based on the visual field of view of each occupant as the occupant is performing common visual tasks in a given environment, and the developed shading system is linked to a distributed sensing network of multiple occupants. ShadeFan is demonstrated as a proof-of-concept dynamic shading system utilizing the GlareShade method.
Keywords
Control Strategies; Design Tool; Daylight; Patterns; Offices; Blinds; Model; Occupant-centric Shading System; Glare; Daylighting; Visual Comfort
Environmental Benefits of Using Hybrid CLT Structure in Midrise Non-Residential Construction: An LCA Based Comparative Case Study in the U.S. Pacific Northwest
Pierobon, Francesca; Huang, Monica; Simonen, Kathrina; Ganguly, Indroneil. (2019). Environmental Benefits of Using Hybrid CLT Structure in Midrise Non-Residential Construction: An LCA Based Comparative Case Study in the U.S. Pacific Northwest. Journal Of Building Engineering, 26.
Abstract
In this study, the cradle-to-gate environmental impact of a hybrid, mid-rise, cross-laminated timber (CLT) commercial building is evaluated and compared to that of a reinforced concrete building with similar functional characteristics. This study evaluates the embodied emissions and energy associated with building materials, manufacturing, and construction. Two alternative designs are considered for fire protection in the hybrid CLT building: 1) a 'fireproofing design', where gypsum wallboard is applied to the structural wood; and 2) a 'charring design', where two extra layers of CLT are added to the panel. The life cycle environmental impacts are assessed using TRACI 2.1 and the total primary energy is evaluated using the Cumulative Energy Demand impact method. Results show that an average of 26.5% reduction in the global warming potential is achieved in the hybrid CLT building compared to the concrete building, excluding biogenic carbon emissions. Except ozone depletion, where the difference in impact between scenarios is < 1%, replacing fireproofing with charring is beneficial for all impact categories. The embodied energy assessment of the building types reveals that, on average, the total primary energy in the hybrid CLT buildings and concrete building are similar. However, the non-renewable energy (fossil-based) use in the hybrid CLT building is 8% lower compared to that of the concrete building. As compared to the concrete building, additional 1,556 tCO(2)(e) and 2,567 tCO(2e) are stored in the wood components of the building (long-term storage of biogenic carbon) in the scenario with fireproofing and with charring, respectively.
Keywords
Wood; Concrete; Energy; Buildings; Impacts; Cross-laminated Timber; U.s. Pacific Northwest; Life Cycle Assessment; Cumulative Energy Demand; Biogenic Carbon; Carbon Storage
A Three-Dimensional Approach to the Extended Limit Analysis of Reinforced Masonry
Roca, Pere; Liew, Andrew; Block, Philippe; Lopez, David Lopez; Echenagucia, Tomás Méndez; Van Mele, Tom. (2022). A Three-Dimensional Approach to the Extended Limit Analysis of Reinforced Masonry. Structures, 35, 1062 – 1077.
Abstract
The Extended Limit Analysis of Reinforced Masonry (ELARM) is a simple and user-friendly method for the design and structural analysis of singly-curved, reinforced tile vaults [1]. It is based on limit analysis but takes into account the reinforcement's contribution to the composite cross-section's bending capacity.& nbsp;A three-dimensional approach to ELARM is presented in this paper. The theoretical framework to understand the implications and limitations of extending ELARM to fully 3D structures is described, together with the strategies to carry out the leap from 2D to 3D. This extension is a lower-bound approach for the design of reinforced masonry, reinforced concrete and concrete-masonry composite shells and the assessment of their strength and stability against external loading.& nbsp;The new, extended method is implemented computationally to speed up the iterative processes, provide quick structural feedback, offer immediate results and allow for user-interactive form-finding and optimisation procedures. Different applications of the developed tool are described through the presentation of examples, including reinforcement optimisation, a form-finding process and a case with a shape beyond funicular geometry.
Keywords
Tile Vault; Masonry; Reinforced Brick; Formwork; Concrete Shells; Limit Analysis; Thrust Network Analysis; Extended Limit Analysis Of Reinforced Masonry; Tile Vaults