Skip to content

AIA publishes “Equity in Architectural Education” co-authored by Dean Renée Cheng and Laura Osburn

The American Institute of Architects (AIA) recently published a supplement to the AIA Guides for Equitable Practice titled “Equity in Architectural Education.” Renée Cheng, dean of the College of Built Environments, served as the project lead for the research and writing team, which included Laura Osburn, research scientist in construction management. The supplement argues that organizational culture is critical to achieving goals of equity, diversity, and inclusion, and is intended to inspire discussion within individual institutions, and among thought leaders…

On the Tradeoffs between Embodied and Operational Carbon in Building Envelope Design: The Impact of Local Climates and Energy Grids

Echenagucia, Tomas Mendez; Moroseos, Teresa; Meek, Christopher. (2023). On the Tradeoffs between Embodied and Operational Carbon in Building Envelope Design: The Impact of Local Climates and Energy Grids. Energy & Buildings, 278.

View Publication

Abstract

The building envelope has a substantial influence on a building's life cycle operational and embodied car-bon emissions. Window-to-wall ratios, wall assemblies, shading and glazing types, have been shown to have a significant impact on total emissions. This paper provides building designers, owners, and policy makers with actionable guidance and a prioritization framework for establishing co-optimized lifecycle carbon performance of facade assembly components in a broad spectrum of climate contexts and energy carbon intensities. A large parametric study of building envelopes is conducted using building perfor-mance simulation and cradle-to-gate embodied carbon calculations in 6 US cities. The authors derive the total carbon emissions optimization for commercial office and residential space types using standard code-reference models and open-source lifecycle data. Comparisons between optimal total carbon solu-tions and (i) optimal operational carbon and (ii) minimum required assemblies, show the impact of under and over investing in envelope-related efficiency measures for each climate. Results show how the rela-tionship between embodied and operational carbon is highly localized, that optimal design variables can vary significantly. In low carbon intensity energy grids, over investment in envelope embodied carbon can exceed as 10 kgCO2e/m2, while under investment in high carbon intensity grids can be higher than 150 kgCO2e/m2.Published by Elsevier B.V.

Keywords

Facades; Building-integrated Photovoltaic Systems; Carbon Emissions; Carbon; Building Performance; Building Designers; Building Envelopes; Refuse Containers; Building Performance Simulation; Embodied Carbon; Operational Carbon; Parametric Modeling; Environmental-impact; Search

Narjes Abbasabadi

Narjes Abbasabadi, Ph.D., is an Assistant Professor in the Department of Architecture at the University of Washington. Dr. Abbasabadi also leads the Sustainable Intelligence Lab. Abbasabadi’s research centers on sustainability and computation in the built environment. Much of her work focuses on advancing design research efforts through developing data-driven methods, workflows, and tools that leverage the advances in digital technologies to enable augmented intelligence in performance-based and human-centered design. With an emphasis on multi-scale exploration, her research investigates urban building energy flows, human systems, and environmental and health impacts across scales—from the scale of building to the scale of neighborhood and city.

Abbasabadi’s research has been published in premier journals, including Applied Energy, Building and Environment, Energy and Buildings, Environmental Research, and Sustainable Cities and Society. She received honors and awards, including “ARCC Dissertation Award Honorable Mention” (Architectural Research Centers Consortium (ARCC), 2020), “Best Ph.D. Program Dissertation Award” (IIT CoA, 2019), and 2nd place in the U.S. Department of Energy (DOE)’s Race to Zero Design Competition (DOE, 2018). In 2018, she organized the 3rd IIT International Symposium on Buildings, Cities, and Performance. She served as editor of the third issue of Prometheus Journal, which received the 2020 Haskell Award from AIA New York, Center for Architecture.

Prior to joining the University of Washington, she taught at the University of Texas at Arlington and the Illinois Institute of Technology. She also has practiced with several firms and institutions and led design research projects such as developing design codes and prototypes for low-carbon buildings. Most recently, she practiced as an architect with Adrian Smith + Gordon Gill Architecture (AS+GG), where she has been involved in major projects, including the 2020 World Expo. Abbasabadi holds a Ph.D. in Architecture from the Illinois Institute of Technology and Master’s and Bachelor’s degrees in Architecture from Tehran Azad University.

College of Built Environments’ Research Restart Fund Awards Four Grants in First of Two Cycles

The College of Built Environments launched a funding opportunity for those whose research has been affected by the ongoing pandemic. The Research Restart Fund, with awards up to $5,000, has awarded 4 grants in its first of two cycles. A grant was awarded to Real Estate faculty member Arthur Acolin, who is partnering with the City of Seattle’s Office of Planning and Community Development to understand barriers that homeowners, particularly those with lower incomes, face to building Accessory Dwelling Units…

Glareshade: A Visual Comfort-Based Approach to Occupant-Centric Shading Systems

Hashemloo, Alireza; Inanici, Mehlika; Meek, Christopher. (2016). Glareshade: A Visual Comfort-Based Approach to Occupant-Centric Shading Systems. Journal Of Building Performance Simulation, 9(4), 351 – 365.

View Publication

Abstract

This paper presents a novel method for designing of an occupant-centric shading algorithm that utilizes visual comfort metric as the form-generating criteria. Based on the premise of previous studies that demonstrate glare as the most important factor for operating shading devices, GlareShade is introduced as a simulation-based shading methodology driven by occupant's visual comfort. GlareShade not only responds to changing outdoor conditions such as the movement of the sun and the variation of cloud cover, but it also accounts for building specific local conditions. GlareShade draws its strength and flexibility from an occupant-centric approach that is based on the visual field of view of each occupant as the occupant is performing common visual tasks in a given environment, and the developed shading system is linked to a distributed sensing network of multiple occupants. ShadeFan is demonstrated as a proof-of-concept dynamic shading system utilizing the GlareShade method.

Keywords

Control Strategies; Design Tool; Daylight; Patterns; Offices; Blinds; Model; Occupant-centric Shading System; Glare; Daylighting; Visual Comfort

Environmental Benefits of Using Hybrid CLT Structure in Midrise Non-Residential Construction: An LCA Based Comparative Case Study in the U.S. Pacific Northwest

Pierobon, Francesca; Huang, Monica; Simonen, Kathrina; Ganguly, Indroneil. (2019). Environmental Benefits of Using Hybrid CLT Structure in Midrise Non-Residential Construction: An LCA Based Comparative Case Study in the U.S. Pacific Northwest. Journal Of Building Engineering, 26.

View Publication

Abstract

In this study, the cradle-to-gate environmental impact of a hybrid, mid-rise, cross-laminated timber (CLT) commercial building is evaluated and compared to that of a reinforced concrete building with similar functional characteristics. This study evaluates the embodied emissions and energy associated with building materials, manufacturing, and construction. Two alternative designs are considered for fire protection in the hybrid CLT building: 1) a 'fireproofing design', where gypsum wallboard is applied to the structural wood; and 2) a 'charring design', where two extra layers of CLT are added to the panel. The life cycle environmental impacts are assessed using TRACI 2.1 and the total primary energy is evaluated using the Cumulative Energy Demand impact method. Results show that an average of 26.5% reduction in the global warming potential is achieved in the hybrid CLT building compared to the concrete building, excluding biogenic carbon emissions. Except ozone depletion, where the difference in impact between scenarios is < 1%, replacing fireproofing with charring is beneficial for all impact categories. The embodied energy assessment of the building types reveals that, on average, the total primary energy in the hybrid CLT buildings and concrete building are similar. However, the non-renewable energy (fossil-based) use in the hybrid CLT building is 8% lower compared to that of the concrete building. As compared to the concrete building, additional 1,556 tCO(2)(e) and 2,567 tCO(2e) are stored in the wood components of the building (long-term storage of biogenic carbon) in the scenario with fireproofing and with charring, respectively.

Keywords

Wood; Concrete; Energy; Buildings; Impacts; Cross-laminated Timber; U.s. Pacific Northwest; Life Cycle Assessment; Cumulative Energy Demand; Biogenic Carbon; Carbon Storage