Skip to content

AIA publishes “Equity in Architectural Education” co-authored by Dean Renée Cheng and Laura Osburn

The American Institute of Architects (AIA) recently published a supplement to the AIA Guides for Equitable Practice titled “Equity in Architectural Education.” Renée Cheng, dean of the College of Built Environments, served as the project lead for the research and writing team, which included Laura Osburn, research scientist in construction management. The supplement argues that organizational culture is critical to achieving goals of equity, diversity, and inclusion, and is intended to inspire discussion within individual institutions, and among thought leaders…

On the Tradeoffs between Embodied and Operational Carbon in Building Envelope Design: The Impact of Local Climates and Energy Grids

Echenagucia, Tomas Mendez; Moroseos, Teresa; Meek, Christopher. (2023). On the Tradeoffs between Embodied and Operational Carbon in Building Envelope Design: The Impact of Local Climates and Energy Grids. Energy & Buildings, 278.

View Publication

Abstract

The building envelope has a substantial influence on a building's life cycle operational and embodied car-bon emissions. Window-to-wall ratios, wall assemblies, shading and glazing types, have been shown to have a significant impact on total emissions. This paper provides building designers, owners, and policy makers with actionable guidance and a prioritization framework for establishing co-optimized lifecycle carbon performance of facade assembly components in a broad spectrum of climate contexts and energy carbon intensities. A large parametric study of building envelopes is conducted using building perfor-mance simulation and cradle-to-gate embodied carbon calculations in 6 US cities. The authors derive the total carbon emissions optimization for commercial office and residential space types using standard code-reference models and open-source lifecycle data. Comparisons between optimal total carbon solu-tions and (i) optimal operational carbon and (ii) minimum required assemblies, show the impact of under and over investing in envelope-related efficiency measures for each climate. Results show how the rela-tionship between embodied and operational carbon is highly localized, that optimal design variables can vary significantly. In low carbon intensity energy grids, over investment in envelope embodied carbon can exceed as 10 kgCO2e/m2, while under investment in high carbon intensity grids can be higher than 150 kgCO2e/m2.Published by Elsevier B.V.

Keywords

Facades; Building-integrated Photovoltaic Systems; Carbon Emissions; Carbon; Building Performance; Building Designers; Building Envelopes; Refuse Containers; Building Performance Simulation; Embodied Carbon; Operational Carbon; Parametric Modeling; Environmental-impact; Search

Narjes Abbasabadi

Narjes Abbasabadi, Ph.D., is an Assistant Professor in the Department of Architecture at the University of Washington. Dr. Abbasabadi also leads the Sustainable Intelligence Lab. Abbasabadi’s research centers on sustainability and computation in the built environment. Much of her work focuses on advancing design research efforts through developing data-driven methods, workflows, and tools that leverage the advances in digital technologies to enable augmented intelligence in performance-based and human-centered design. With an emphasis on multi-scale exploration, her research investigates urban building energy flows, human systems, and environmental and health impacts across scales—from the scale of building to the scale of neighborhood and city.

Abbasabadi’s research has been published in premier journals, including Applied Energy, Building and Environment, Energy and Buildings, Environmental Research, and Sustainable Cities and Society. She received honors and awards, including “ARCC Dissertation Award Honorable Mention” (Architectural Research Centers Consortium (ARCC), 2020), “Best Ph.D. Program Dissertation Award” (IIT CoA, 2019), and 2nd place in the U.S. Department of Energy (DOE)’s Race to Zero Design Competition (DOE, 2018). In 2018, she organized the 3rd IIT International Symposium on Buildings, Cities, and Performance. She served as editor of the third issue of Prometheus Journal, which received the 2020 Haskell Award from AIA New York, Center for Architecture.

Prior to joining the University of Washington, she taught at the University of Texas at Arlington and the Illinois Institute of Technology. She also has practiced with several firms and institutions and led design research projects such as developing design codes and prototypes for low-carbon buildings. Most recently, she practiced as an architect with Adrian Smith + Gordon Gill Architecture (AS+GG), where she has been involved in major projects, including the 2020 World Expo. Abbasabadi holds a Ph.D. in Architecture from the Illinois Institute of Technology and Master’s and Bachelor’s degrees in Architecture from Tehran Azad University.

College of Built Environments’ Research Restart Fund Awards Four Grants in First of Two Cycles

The College of Built Environments launched a funding opportunity for those whose research has been affected by the ongoing pandemic. The Research Restart Fund, with awards up to $5,000, has awarded 4 grants in its first of two cycles. A grant was awarded to Real Estate faculty member Arthur Acolin, who is partnering with the City of Seattle’s Office of Planning and Community Development to understand barriers that homeowners, particularly those with lower incomes, face to building Accessory Dwelling Units…

Architecture During Wartime: The Mostra d’Oltremare and Esposizione Universale di Roma

McLaren, Brian L. (2014). Architecture During Wartime: The Mostra d’Oltremare and Esposizione Universale di Roma. Architectural Theory Review, 19(3), 299 – 318.

View Publication

Abstract

This paper examines the architecture and planning of the Mostra d'Oltremare in Naplesa national display of colonial expansion that opened in May 1940and the Esposizione Universale di Romaan Olympics of Civilization that was proposed for 1942. These two major exhibitions will be studied in relation to Italy's violent and racially motivated Imperial politics. In the first case, it will closely examine the Villaggi indigeni (Indigenous village) of Italian East Africa, a scientific re-enactment of native constructions that became a space of violence and political confinement. In the second, it will study the Villaggio operaio (Workers' village), which, just like the larger exhibition grounds, was transformed into a site of military conflict during the war period.

Jack Christiansen’s Cylindrical Concrete Shells

Sprague, Tyler S. (2018). Jack Christiansen’s Cylindrical Concrete Shells. Journal Of The International Association For Shell And Spatial Structures, 59(2), 131 – 140.

View Publication

Abstract

This article examines the early thin shell concrete designs of the structural engineer Jack Christiansen (1927-2017), a 2016 recipient of the Eduardo Torroja Medal. With no proper training in shell behavior, Christiansen started his career designing cylindrical concrete shells based on the 1952 American Society of Civil Engineers (ASCE) Manual 31. This manual, and its approach to solving indeterminate behavior, both directed Christiansen's early design and provided a framework for significant creative work outside its bounds. His designs of long, spanning shells and short, arching shells (between 1954 and 1958) were adapted to a variety of architectural spaces, utilizing emerging structural methods like prestressing. These designs constitute the first era of Christiansen's career, and set the stage for more varied shell geometries to come.

Keywords

Historic Structures; Concrete Shells; Cylindrical Shells; Modernism; Indeterminate Analysis Methods