Skip to content

Narjes Abbasabadi

Narjes Abbasabadi, Ph.D., is an Assistant Professor in the Department of Architecture at the University of Washington. Dr. Abbasabadi also leads the Sustainable Intelligence Lab. Abbasabadi’s research centers on sustainability and computation in the built environment. Much of her work focuses on advancing design research efforts through developing data-driven methods, workflows, and tools that leverage the advances in digital technologies to enable augmented intelligence in performance-based and human-centered design. With an emphasis on multi-scale exploration, her research investigates urban building energy flows, human systems, and environmental and health impacts across scales—from the scale of building to the scale of neighborhood and city.

Abbasabadi’s research has been published in premier journals, including Applied Energy, Building and Environment, Energy and Buildings, Environmental Research, and Sustainable Cities and Society. She received honors and awards, including “ARCC Dissertation Award Honorable Mention” (Architectural Research Centers Consortium (ARCC), 2020), “Best Ph.D. Program Dissertation Award” (IIT CoA, 2019), and 2nd place in the U.S. Department of Energy (DOE)’s Race to Zero Design Competition (DOE, 2018). In 2018, she organized the 3rd IIT International Symposium on Buildings, Cities, and Performance. She served as editor of the third issue of Prometheus Journal, which received the 2020 Haskell Award from AIA New York, Center for Architecture.

Prior to joining the University of Washington, she taught at the University of Texas at Arlington and the Illinois Institute of Technology. She also has practiced with several firms and institutions and led design research projects such as developing design codes and prototypes for low-carbon buildings. Most recently, she practiced as an architect with Adrian Smith + Gordon Gill Architecture (AS+GG), where she has been involved in major projects, including the 2020 World Expo. Abbasabadi holds a Ph.D. in Architecture from the Illinois Institute of Technology and Master’s and Bachelor’s degrees in Architecture from Tehran Azad University.

College of Built Environments’ Research Restart Fund Awards Four Grants in First of Two Cycles

The College of Built Environments launched a funding opportunity for those whose research has been affected by the ongoing pandemic. The Research Restart Fund, with awards up to $5,000, has awarded 4 grants in its first of two cycles. A grant was awarded to Real Estate faculty member Arthur Acolin, who is partnering with the City of Seattle’s Office of Planning and Community Development to understand barriers that homeowners, particularly those with lower incomes, face to building Accessory Dwelling Units…

The Effect of Luminance Distribution Patterns on Occupant Preference in a Daylit Office Environment

Van Den Wymelenberg, Kevin; Inanici, Mehlika; Johnson, Peter. (2010). The Effect of Luminance Distribution Patterns on Occupant Preference in a Daylit Office Environment. Leukos, 7(2), 103 – 122.

View Publication

Abstract

New research in daylighting metrics and developments in validated digital High Dynamic Range (HDR) photography techniques suggest that luminance based lighting controls have the potential to provide occupant satisfaction and energy saving improvements over traditional illuminance based lighting controls. This paper studies occupant preference and acceptance of patterns of luminance using HDR imaging and a repeated measures design methodology in a daylit office environment. Three existing luminance threshold analysis methods [method1: predetermined absolute luminance threshold (for example, 2000 cd/m(2)), method2: scene based mean luminance threshold, and method3: task based mean luminance threshold] were studied along with additional candidate metrics for their ability to explain luminance variability of 18 participant assessments of 'preferred' and 'just disturbing' scenes under daylighting conditions. Per-pixel luminance data from each scene were used to calculate Daylighting Glare Probability (DGP), Daylight Glare Index (DGI), and other candidate metrics using these three luminance threshold analysis methods. Of the established methods, the most consistent and effective metrics to explain variability in subjective responses were found to be; mean luminance of the task (using method3; (adj)r(2) = 0.59), mean luminance of the entire scene (using method2; (adj)r(2) = 0.44), and DGP using 2000 cd/m(2) as a glare source identifier (using method1; (adj)r(2) = 0.41). Of the 150 candidate metrics tested, the most effective was the 'mean luminance of the glare sources', where the glare sources were identified as 7* the mean luminance of the task position ((adj)r(2) = 0.64). Furthermore, DGP consistently performed better than DGI, confirming previous findings. 'Preferred' scenes never had more than similar to 10 percent of the field of view (FOV) that exceeded 2000 cd/m(2). Standard deviation of the entire scene luminance also proved to be a good predictor of satisfaction with general visual appearance.

Keywords

Glare; Daylight Metrics; Luminance Based Lighting Controls; Discomfort Glare; Occupant Preference; High Dynamic Range

An Investigation of the Daylighting Simulation Techniques and Sky Modeling Practices for Occupant Centric Evaluations

Inanici, Mehlika; Hashemloo, Alireza. (2017). An Investigation of the Daylighting Simulation Techniques and Sky Modeling Practices for Occupant Centric Evaluations. Building And Environment, 113, 220 – 231.

View Publication

Abstract

Occupant centric performance approaches in daylighting studies promote design decisions that support human visual comfort, productivity, and visual preferences, along with more conventional energy efficiency criteria. Simulating per-pixel luminance values and luminance distribution patterns for the entire scene allows us to analyze the occupant centric metrics and performance criteria. However, there are a number of different sky models, complex fenestration models, and simulation techniques that produce either conventional point in time images or annual luminance maps. This paper discusses the similarities and differences between different techniques; and a comparison analyses provides insight about their impact on occupant centric lighting measures. The comparisons for sky modeling include the conventional CIE skies (Clear, Intermediate, and Overcast), measurement based CIE models, Perez all-weather skies, and high dynamic range image based skies. The comparison of simulation techniques include point in time simulations, image based lighting simulations, and annual luminance simulations (threephase and five-phase methods). Results demonstrate that measurement based sky models match real world conditions with reasonable proximity, and generic CIE skies consistently underestimate the indoor lighting conditions. Annual simulation methods provide a large database of temporal luminance variations, where individual instances are comparable to point in time simulations. Long term luminance simulations provide opportunities to evaluate the percentage of the year that a given luminance based criteria is met or violated. (C)2016 Elsevier Ltd. All rights reserved.

Keywords

Complex Fenestration Systems; Scattering Distribution-functions; Discomfort Glare; Visual Comfort; Daylit Spaces; Validation; Radiance; Performance; Offices; Design; Sky Models; Daylight Simulations; Point In Time Simulations; Image Based Lighting; Annual Lighting Simulations; Annual Luminance Maps

Comparative Environmental Analysis of Seismic Damage in Buildings

Huang, M.; Simonen, K. (2020). Comparative Environmental Analysis of Seismic Damage in Buildings. Journal Of Structural Engineering, 146(2).

View Publication

Abstract

In studying the environmental impacts of buildings, earthquake hazards are rarely considered, but their environmental impacts can be significant. This case study paper demonstrates how the US Federal Emergency Management Agency's Performance Assessment Calculation Tool (PACT) can be used to analyze the environmental impacts of buildings using probabilistic seismic hazard assessment. PACT was used to evaluate 10 case study buildings that varied by five types of lateral systems and two risk categories. For each building, PACT generated 1,000 realizations at five earthquake intensities. The resulting environmental impacts were analyzed according to their distribution, median, and average values, and the differences among building component types, risk categories, and lateral force-resisting systems were explored. In this study, building components that were categorized under Exterior Enclosures, Interior Finishes, and Heating, Ventilation, and Air-Conditioning (HVAC) produced notably higher environmental impacts in response to seismic damage, and their vulnerability to displacement- or acceleration-induced damage could be attributed to the characteristics of the lateral systems. Although these observations are notable, they should not be taken as universally applicable to all buildings. Instead, these findings exemplify how the environmental impact results from PACT can be analyzed and interpreted to address both the seismic and environmental aspects of building design. (C) 2019 American Society of Civil Engineers.

Keywords

Impact

Occupant Perceptions of an Indoor Thermal Environment in a Naturally Ventilated Building

Ilyas, Salman; Emery, Ashley; Heerwagen, Judith; Heerwagen, Dean. (2012). Occupant Perceptions of an Indoor Thermal Environment in a Naturally Ventilated Building. Ashrae Transactions, 118(2), 114 – 121.

View Publication

Abstract

A strong emphasis is currently being placed on the use of natural ventilation as a means for providing a safe and healthful indoor environment as part of green building programs. There has been an increasing interest in developing natural ventilation design strategies that can furnish adequate fresh air to the building interior and simultaneously control the indoor air quality effectively, while providing significant energy savings. In naturally ventilated spaces, furnishing a suitable air exchange rate between the building exterior and interior can create a thermally comfortable and healthy indoor environment. However, the air exchange must occur such that the indoor air quality of the building is not compromised and thermally comfortable conditions for the occupants can be maintained. Architecture Hall is a recently renovated, naturally ventilated building located on the University of Washington campus in Seattle. The natural ventilation in this building was evaluated using a variety of experimental techniques, which included measurement of carbon dioxide (CO2) levels, air exchange rates and air velocities. High CO2 concentrations are a good indicator of inadequate ventilation rates and poor air movement in a space. Hence, a number of standards and certification programs specify the use of outdoor air monitoring based on CO2 concentrations in an occupied space. Occupant surveys, based on a U.S. EPA study, were also administered to understand and analyse occupant perceptions about the indoor thermal environment and to identify the prevalence of any building related illness symptoms. The discussion in this paper will focus on the findings of the occupant surveys and how they relate to the measured CO2 levels, air exchange rates and air velocities in the naturally ventilated spaces. The natural ventilation function in Architecture Hall is largely climate driven. For the period of November through March particularly, outside temperatures are quite low and windows are seldom opened by the occupants, in spite of a large number of occupants being dissatisfied with the indoor environmental quality. Consequently, CO2 concentrations consistently exceed acceptable levels and very little air movement is recorded. [ABSTRACT FROM AUTHOR]; Copyright of ASHRAE Transactions is the property of ASHRAE and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Keywords

Thermal Comfort; Natural Ventilation; Energy Consumption Of Buildings; Indoor Air Quality; Heat Exchangers; Carbon Dioxide

The Past and Future of Pioneer Square Historic Character and Infill Construction in Seattle’s First Historic District

Ochsner, Jeffrey Karl. (2017). The Past and Future of Pioneer Square Historic Character and Infill Construction in Seattle’s First Historic District. Change Over Time-an International Journal Of Conservation And The Built Environment, 7(2), 320 – 343.

View Publication

Abstract

Seattle designated the Pioneer Square Preservation District, the city's first historic district, nearly fifty years ago. Over the past half century, the district has seen significant infrastructure improvements, a changing resident population, and an evolving mix of businesses. Although many buildings underwent interior alteration, the visible external character of the historic fabric has remained largely intact. The district's Preservation Board reviews a constant stream of small exterior restoration and rehabilitation projects, but it is the relatively few examples of new infill construction that have presented the most challenging questions as the board has had to balance the desire for new development and the activity it brings with the wish to protect historic character. Although the Pioneer Square District ordinance, the Secretary of Interior's Standards, and rules developed by the board all offer guidance, every new design presents questions about the exact meaning of terms like compatible and differentiated. Today, with Seattle's booming economy and growing population, more new projects of a larger scale are being proposed. As a result, the Pioneer Square Preservation District presents a singular case study demonstrating continuing efforts to protect the historic built environment while still allowing appropriate growth.

Residential Building Lifespan and Community Turnover

Ianchenko, Alex; Simonen, Kathrina; Barnes, Clayton. (2020). Residential Building Lifespan and Community Turnover. Journal Of Architectural Engineering, 26(3).

View Publication

Abstract

Environmental impact studies within the built environment rely on predicting building lifespan to describe the period of occupation and operation. Most life cycle assessments (LCAs) are based on arbitrary lifespan values, omitting the uncertainties of assessing service life. This research models the lifespan of American residential housing stock as a probabilistic survival distribution based on available data from the American Housing Survey (AHS). The log-normal, gamma, and Weibull distributions were fit to demolition data from 1985 to 2009 and these three models were compared with one another using the Bayesian information criterion. Analysis revealed that the estimated average housing lifespan in the United States is 130 years given model assumptions, although a probabilistic approach to lifespan can yield higher accuracy on a case-by-case basis. Parameters for modeling housing lifespan as log-normal, gamma, and Weibull survival functions are published with the intent of further application in LCA. The application of probabilistic housing lifespan models to community-wide turnover and integration with existing simulations of natural disaster are proposed as potential ways to achieve community sustainability and resilience goals. (c) 2020 American Society of Civil Engineers.

Keywords

Energy-consumption; Service Life; Cycle; Demolition; Emissions; Design; Impact; Model; Housing Stock Lifetime; Residential Buildings; Housing Turnover; Life Cycle Assessment; Service Life Prediction