Cheng, Tao; Teizer, Jochen; Migliaccio, Giovanni C.; Gatti, Umberto C. (2013). Automated Task-Level Activity Analysis through Fusion of Real Time Location Sensors and Worker’s Thoracic Posture Data. Automation In Construction, 29, 24 – 39.
View Publication
Abstract
Knowledge of workforce productivity and activity is crucial for determining whether a construction project can be accomplished on time and within budget. Significant work has been done on improving and assessing productivity and activity at task, project, or industry levels. Task level productivity and activity analysis are used extensively within the construction industry for various purposes, including cost estimating, claim evaluation, and day-to-day project management. The assessment is mostly performed through visual observations and after-the-fact analyses even though previous studies show automatic translation of operations data into productivity information and provide spatial information of resources for specific construction operations. An original approach is presented that automatically assesses labor activity. Using data fusion of spatio-temporal and workers' thoracic posture data, a framework was developed for identifying and understanding the worker's activity type over time. This information is used to perform automatic work sampling that is expected to facilitate real-time productivity assessment. Published by Elsevier B.V.
Keywords
Detectors; Construction Projects; Labor Supply; Real-time Control; Construction Costs; Project Management; Machine Translating; Activity And Task Analysis; Construction Worker; Data Fusion; Health; Location Tracking; Productivity; Safety; Sensors; Thoracic Posture Data; Workforce; Construction Industry; Costing; Labour Resources; Sensor Fusion; Real-time Productivity Assessment; Automatic Work Sampling; Worker Activity Type; Spatio-temporal Data; Labor Activity Assessment; Construction Operations; Spatial Information; Productivity Information; Day-to-day Project Management; Claim Evaluation; Cost Estimating; Task Level Productivity; Industry Levels; Project Levels; Construction Project; Workforce Activity; Workforce Productivity; Worker Thoracic Posture Data; Real Time Location Sensors Fusion; Automated Task-level Activity Analysis; Construction-industry Productivity
Way, Thaisa. (2013). Landscapes of Industrial Excess: A Thick Sections Approach to Gas Works Park. Journal Of Landscape Architecture, 8(1), 28 – 39.
View Publication
Abstract
Gas Works Park in Seattle, WA, designed by Richard Haag Associates and recently listed on the National Register of Historic Landmarks, serves as one of the earliest post-industrial sites to be transformed into a public park through remediation and reclamation. The radical nature of the park lies in its adaptive reuse of waste landscapes, not merely ameliorating contaminated land but transforming it to serve the public. Although officials and residents called for the remains of the industrial plant to be removed, Haag convinced the public to retain elements of the industrial apparatus and, more importantly, to retain and treat the polluted soils. Previous scholarship focuses primarily on the architectural elements, leaving the landscape as mere setting. This article proposes a site narrative as read through the landform. It suggests an alternative reading that gives voice to the site's toxic history.
Keywords
Gas Works Park; Polluted Landscapes; Post-industrial Landscape; Richard Haag; Thick Sections
Gatti, Umberto C.; Schneider, Suzanne; Migliaccio, Giovanni C. (2014). Physiological Condition Monitoring of Construction Workers. Automation In Construction, 44, 227 – 233.
View Publication
Abstract
Monitoring of workers' physiological conditions can potentially enhance construction workforce productivity, safety, and well-being. Recently, Physiological Status Monitors (PSMs) were validated as an accurate technology to assess physiological conditions during typical sport science and medicine testing procedures (e.g., treadmill and cycle ergometer protocols). However, sport science and medicine testing procedures cannot simulate routine construction worker movements in a comprehensive manner. Thus, this paper investigated the validity of two PSMs by comparing their measurements with gold standard laboratory instruments' measurements at rest and during dynamic activities resembling construction workforce's routine activities. Two physiological parameters such as heart rate and breathing rate were considered. Ten apparently healthy subjects participated in the study. One of the PSMs proved to be a viable technology in assessing construction workers' heart rate (correlation coefficient >= 0.74; percentage of differences within +/- 11 bpm >= 84.8%). (C) 2014 Elsevier B.V. All rights reserved,
Keywords
Construction Workers; Labor Supply; Labor Productivity; Well-being; Health Status Indicators; Heart Rate Monitoring; Physiology; Construction Management; Construction Worker; Ergonomics; Occupational Health And Safety; Physiological Status Monitoring Technology; Productivity; Work Physiological Demand; Work Physiology; Construction Industry; Monitoring; Occupational Safety; Medicine Testing; Sport Science; Psm; Physiological Status Monitors; Safety; Construction Workforce Productivity; Workers Monitoring; Physiological Condition Monitoring; Heart-rate Monitors; R-r Intervals; Statistical-methods; Respiratory Rate; Physical Load; Polar S810; Strain; Validity; Reliability; Validation
Stewart, Orion; Moudon, Anne Vernez; Claybrooke, Charlotte. (2014). Multistate Evaluation of Safe Routes to School Programs. American Journal Of Health Promotion, 28, S89 – S96.
View Publication
Abstract
Purpose. State Safe Routes to School (SRTS) programs provide competitive grants to local projects that support safe walking, bicycling, and other modes of active school travel (AST). This study assessed changes in rates of AST after implementation of SRTS projects at multiple sites across four states. Design. One-group pretest and posttest. Setting. Florida, Mississippi, Washington, and Wisconsin. Subjects. Convenience sample of 48 completed SRTS projects and 53 schools affected by a completed SRTS project. Intervention. State-funded SRTS project. Measures. AST was measured as the percentage of students walking, bicycling, or using any AST mode. SRTS project characteristics were measured at the project, school, and school neighborhood levels. Analysis. Paired-samples t-tests were used to assess changes in AST. Bivariate analysis was used to identify SRTS project characteristics associated with increases in AST. Data were analyzed separately at the project (n = 48) and school (n = 53) levels. Results. Statistically significant increases in AST were observed across projects in all four states. All AST modes increased from 12.9% to 17.6%; walking from 9.8% to 14.2%; and bicycling from 2.5% to 3.0%. Increases in rates of bicycling were negatively correlated with baseline rates of bicycling. Conclusion. State-funded SRTS projects are achieving one of the primary program goals of increasing rates of AST. They may be particularly effective at introducing bicycling to communities where it is rare. The evaluation framework introduced in this study can be used to continue tracking the effect of state SRTS programs as more projects are completed.
Keywords
Transportation Of School Children; Physical Activity Measurement; Health Promotion; Cycling; Walking; School Children -- United States; Bicycling; Children; Commuting; Health Focus: Fitness/physical Activity; Manuscript Format: Research; Outcome Measure: Behavioral; Prevention Research; Research Purpose: Program Evaluation; Schools; Setting: School; Strategy: Skill Building/behavior Change, Built Environment; Study Design: Quasi-experimental; Target Population Age: Youth; Target Population Circumstances: Geographic Location; Physical-activity; Mental-health; Travel; Association; Validity; Mode; Bus
Jiao, J.; Moudon, A. V.; Kim, S. Y.; Hurvitz, P. M.; Drewnowski, A. (2015). Health Implications of Adults’ Eating at and Living Near Fast Food or Quick Service Restaurants. Nutrition & Diabetes, 5.
View Publication
Abstract
BACKGROUND: This paper examined whether the reported health impacts of frequent eating at a fast food or quick service restaurant on health were related to having such a restaurant near home. METHODS: Logistic regressions estimated associations between frequent fast food or quick service restaurant use and health status, being overweight or obese, having a cardiovascular disease or diabetes, as binary health outcomes. In all, 2001 participants in the 2008-2009 Seattle Obesity Study survey were included in the analyses. RESULTS: Results showed eating >= 2 times a week at a fast food or quick service restaurant was associated with perceived poor health status, overweight and obese. However, living close to such restaurants was not related to negative health outcomes. CONCLUSIONS: Frequent eating at a fast food or quick service restaurant was associated with perceived poor health status and higher body mass index, but living close to such facilities was not.
Keywords
Body-mass Index; Socioeconomic-status; Built Environment; Obesity; Association; Consumption; Weight; Proximity; Outlets; Establishments
Bae, Chang-hee Christine; Sinha, Debmalya. (2016). Measuring Pedestrian Exposure to PM-2.5: Case of the Seattle, Washington, International District. Transportation Research Record, 2570, 139 – 147.
View Publication
Abstract
Traffic-related air pollution is dangerous to human health. Although transportation and land use planning policies often focus on making walking more attractive, there is a lack of research on pedestrian exposure to air pollution levels. This research focused on pedestrian exposure to particulate matter with a diameter of 2.5 mu m or less (PM-2.5) in the International District (ID) adjacent to downtown Seattle, Washington. Several types of equipment were used: (a) a portable nephelometer (Radiance Research M903) mounted on a backpack (arranged by the Puget Sound Clean Air Agency); (b) an AirCasting mobile application (by Habitmap) in a cell phone to record the researcher's location and exposure levels while walking; and (c) a GoPro Hero camera to record visual images of the surrounding built environment, traffic volume, and other activities. The field data were collected three times a day (morning, midday, and evening) for one week in winter (December 31, 2014-January 9, 2015) and one week in spring (March 21-30, 2015) on selected routes in the ID. The study found seasonal and time-of-day variability of exposure levels: there were higher PM-2.5 concentration levels during the winter (57.77 mu g/m(3)) than in the spring (6.99 mu g/m(3)), and higher levels in the morning (25 mu g/m(3)) than in the evening (17 mu g/m(3)). Also, the average PM-2.5 levels of ID data were slightly higher (20.7 mu g/m(3)) than those at the nearest U.S. Environmental Protection Agency monitoring station (19.0 mu g/m(3)). The researchers concluded that the key contributors of pedestrian exposure to air pollution are traffic, construction activities, and smokers on sidewalks.
Keywords
Particulate Air-pollution; Long-term Exposure; Particle Number; Fine; Quality; Health; Pm2.5; Risk; Road
Ge, Yue ‘gurt’; Lindell, Michael K. (2016). County Planners’ Perceptions of Land-Use Planning Tools for Environmental Hazard Mitigation: A Survey in the US Pacific States. Environment And Planning B-planning & Design, 43(4), 716 – 736.
View Publication
Abstract
Land-use planning tools have been extensively applied in the U.S. to achieve environmental sustainability and disaster resiliency for local communities. An important issue related to land-use planning tools is planners' beliefs about the ways in which these tools differ from each other and, thus, how planners choose among these tools for environmental hazard mitigation. A web-based survey collected data from planners in counties (or boroughs) in the five U.S. Pacific states (where county land-use planning is limited to unincorporated areas). The results indicate that planners substantially, but not completely, agreed in their perceptions of planning tools, that planners' perceptions of planning tools are minimally related to their personal characteristics and those of their jurisdictions, and that planners' perceptions of planning tools are significantly correlated with the capacity of their planning agencies. Planners viewed effectiveness (a desirable attribute) as positively correlated with economic costs and other impediments (which are undesirable attributes) so they must make trade-offs among these attributes and choose the most appropriate tool when formulating a growth management strategy.
Keywords
Interrater Reliability; Local Commitment; Management; Agreement; Index; Planners' Perceptions; Plan-making Processes; Land-use Planning Tools; Environmental Hazard Mitigation; Us Pacific States
Ochsner, Jeffrey Karl. (2016). The Emergence of Regional Modernism in Seattle Architecture from the 1930s to the 1950s. Pacific Northwest Quarterly, 108(1), 12 – 28.
Abdirad, Hamid. (2017). Metric-Based BIM Implementation Assessment: A Review of Research and Practice. Architectural Engineering And Design Management, 13(1), 52 – 78.
View Publication
Abstract
Building information modeling (BIM) is one of the most significant developments in the construction industry, as it introduces new technologies, processes, and interactions into practice. Prior research shows that there is an increasing interest among practitioners and academics to assess maturity, productivity, and performance of BIM implementation. This suggests that as BIM adoption grows, the need for BIM implementation assessment arises to facilitate monitoring, measuring, and improving BIM practices. However, so far, no single study has comprehensively reviewed and reported the existing approaches, metrics, and criteria used for assessing BIM practices. This study aims to review and analyze the literature and synthesize existing knowledge relevant to the topic. The author develops a thematic framework of BIM aspects, BIM goals, and performance evaluation trends to define grounds for assessing BIM implementation. Based on the framework, this research analyzed a total number of 97 references (selected out of 322 studies) to identify, extract, and classify metrics/criteria used for assessing BIM implementation. This study has practical implications for developing future BIM maturity models and BIM assessment tools as it synthesizes the existing developments on this topic, highlights gaps and limitations in metric-based BIM assessment, and provides recommendations for further research and developments.
Keywords
Computer Software; Building Information Modeling; Software Measurement; Performance Evaluation; Bim Assessment; Bim Implementation; Criteria; Metrics; Performance; Buildings (structures); Engineering Information Systems; Structural Engineering Computing; Metric-based Bim Implementation Assessment; Construction Industry; Productivity; Building Information Model; As-built Bim; Laser Scans; Life-cycle; Construction; Design; Project; Objects; Impact
Huang, Ruizhu; Moudon, Anne V.; Zhou, Chuan; Stewart, Orion T.; Saelens, Brian E. (2017). Light Rail Leads to More Walking Around Station Areas. Journal Of Transport & Health, 6, 201 – 208.
View Publication
Abstract
Areas around Light Rail Transit (LRT) stations offer ideal conditions for Transit-Oriented Development (TOD). Relatively dense, mixed-use neighborhoods can have positive impacts on mobility, health, and perceptions of neighborhood safety among nearby residents, primarily through walking activity for both transit and other purposes. To examine how station areas may attract new activity, this study analyzed changes in walking around station areas among people living close to an LRT station before and after the opening of a new transit system. This study examined walking behavior among the subset of 214 participants living within one mile of one of 13 LRT stations from among a sample of residents living close or further away from a new LRT line in Seattle. They completed a survey and a travel log and wore an accelerometer and a GPS for 7 days both before (2008) and after the opening of the Seattle area LRT (2010). Walking bouts were derived using a previously developed algorithm. The main outcome was the individual-level change in the proportion of daily walking within one quarter Euclidean mile of an LRT station. Overall walking decreased from before to after the LRT opening while station area walking did not change significantly, indicating a shift in walking activity to the station areas after the introduction of LRT. Increases in the proportion of station area walking were negatively related to participants' distance between home and the nearest LRT station, peaking at .0.75 mile. Male gender, college education, normal weight status, less access to cars, and frequent LRT use were also significantly associated with greater positive changes in the proportion of station area walking. The shift in walking to station areas after the completion of light rail provides evidence that the local proximate population is attracted to station areas, which may potentially benefit both transit use and TOD area economic activity. The residential catchment area for the shift in LRT area walking was < 0.75 mile of the LRT stations. (C) 2017 Elsevier Ltd All rights reserved.
Keywords
Body-mass Index; Physical-activity; Built Environment; Travel Behavior; Transit; Stop; Transit Oriented Development (tod); Behavior Change; Global Positioning Systems; Geographic Information Systems