James, Peter; Hart, Jaime E.; Hipp, J. Aaron; Mitchell, Jonathan A.; Kerr, Jacqueline; Hurvitz, Philip M.; Glanz, Karen; Laden, Francine. (2017). GPS-Based Exposure to Greenness and Walkability and Accelerometry-Based Physical Activity. Cancer Epidemiology Biomarkers & Prevention, 26(4), 525 – 532.
View Publication
Abstract
Background: Physical inactivity is a risk factor for cancer that may be influenced by environmental factors. Indeed, dense and well-connected built environments and environments with natural vegetation may create opportunities for higher routine physical activity. However, studies have focused primarily on residential environments to define exposure and self-reported methods to estimate physical activity. This study explores the momentary association between minute-level global positioning systems (GPS)-based greenness exposure and time-matched objectively measured physical activity. Methods: Adult women were recruited from sites across the United States. Participants wore a GPS device and accelerometer on the hip for 7 days to assess location and physical activity at minutelevel epochs. GPS records were linked to 250mresolution satellitebased vegetation data and Census Block Group-level U.S. Environmental Protection Agency (EPA) Smart Location Database walkability data. Minute-level generalized additive mixed models were conducted to test for associations between GPS measures and accelerometer count data, accounting for repeated measures within participant and allowing for deviations fromlinearity using splines. Results: Among 360 adult women (mean age of 55.3 +/- 10.2 years), we observed positive nonlinear relationships between physical activity and both greenness and walkability. In exploratory analyses, the relationships between environmental factors and physical activity were strongest among those who were white, had higher incomes, and who were middle-aged. Conclusions: Our results indicate that higher levels of physical activity occurred in areas with higher greenness and higher walkability. Impact: Findings suggest that planning and design policies should focus on these environments to optimize opportunities for physical activity. (C) 2017 AACR.
Keywords
Built Environments; Health Research; Breast-cancer; Obesity; Neighborhood; Validation; Validity; Walking; Risk; Energetics
Zhang, Su; Bogus, Susan M.; Lippitt, Christopher D.; Migliaccio, Giovanni C. (2017). Estimating Location-Adjustment Factors for Conceptual Cost Estimating Based on Nighttime Light Satellite Imagery. Journal Of Construction Engineering And Management, 143(1).
View Publication
Abstract
A fundamental process in construction cost estimation is the appropriate adjustment of costs to reflect project location. Unfortunately, location adjustment factors are not available for all locations. To overcome this lack of data, cost estimators in the United States often use adjustment factors from adjacent locations, referred to as the nearest neighbor (NN) method. However, these adjacent locations may not have similar economic conditions, which limit the accuracy of the NN method. This research proposes a new method of using nighttime light satellite imagery (NLSI) to estimate location adjustment factors where they do not exist. The NLSI method for estimating location adjustment factors was evaluated against an established cost index database, and results show that NLSI can be used to effectively estimate location adjustment factors. When compared with NN and other alternative proximity-based location adjustment methods, the proposed NLSI method leads to a 25-40% reduction of the median absolute error. This work contributes to the body of knowledge by introducing a more accurate method for estimating location adjustment factors which can improve cost estimates for construction projects where location adjustment factors do not currently exist. (C) 2016 American Society of Civil Engineers.
Keywords
Construction Industry; Costing; Industrial Economics; Project Management; Remote Sensing; Location-adjustment Factors; Nighttime Light Satellite Imagery; Construction Cost Estimation; Project Location; United States; Economic Conditions; Nlsi Method; Cost Index Database; Median Absolute Error Reduction; Construction Projects; Nearest Neighbor Method; Urbanization Dynamics; Proxy; Construction Costs; Estimation; Construction Management; Pricing; Cost And Schedule
Lacoe, Johanna; Bostic, Raphael W.; Acolin, Arthur. (2018). Crime and Private Investment in Urban Neighborhoods. Journal Of Urban Economics, 108, 154 – 169.
View Publication
Abstract
The question of how best to improve neighborhoods that lag behind has drawn considerable attention from policy-makers, practitioners, and academics, yet there remains a vigorous debate regarding the best approaches to accomplish community development. This paper investigates the role crime policy plays in shaping the trajectory of neighborhoods. Much of the existing research on neighborhood crime was conducted in rising-crime environments, and the evidence was clear: high levels of crime have adverse effects on neighborhoods and resident quality of life, This study examines how private investment in neighborhoods in two cities Chicago and Los Angeles changed as the incidence of neighborhood crime changed during the 2000s, a period when crime was declining city-wide in both places. Using detailed blockface-level data on the location of crime and private investments between 2006 and 2011, the analysis answers the question: Do changes in crime affect private development decisions? The results show that private investment, as represented by building permits, decreases on blocks where crime increases in the past year. We also find that the relationship between crime and private investment is not symmetric private investment appears to only be sensitive to crime in rising crime contexts. The result is present in both cities, and robust to multiple definitions of crime and the elimination of outliers and the main commercial district. These results suggest that crime-reduction policies can be an effective economic development tool, but only in certain neighborhoods facing specific circumstances.
Keywords
Enterprise Zones; Crime; Investment; Neighborhoods
Wentz, Elizabeth A.; York, Abigail M.; Alberti, Marina; Conrow, Lindsey; Fischer, Heather; Inostroza, Luis; Jantz, Claire; Pickett, Steward T. A.; Seto, Karen C.; Taubenboeck, Hannes. (2018). Six Fundamental Aspects for Conceptualizing Multidimensional Urban Form: A Spatial Mapping Perspective. Landscape And Urban Planning, 179, 55 – 62.
View Publication
Abstract
Urbanization is currently one of the most profound transformations taking place across the globe influencing the flows of people, energy, and matter. The urban form influences and is influenced by these flows and is therefore critical in understanding and how urban areas affect and are affected by form. Nevertheless, there is a lack of uniformity in how urban form is analyzed. Urban form analyzed from a continuum of a simple urban versus non-urban classification to highly detailed representations of land use and land cover. Either end of the representation spectrum limits the ability to analyze within-urban dynamics, to make cross-city comparisons, and to produce generalizable results. In the framework of remote sensing and geospatial analysis, we identify and define six fundamental aspects of urban form, which are organized within three overarching components. Materials, or the physical elements of the urban landscape, consists of three aspects (1) human constructed elements, (2) the soil-plant continuum, and (3) water elements. The second component is configuration, which includes the (4) two- and three-dimensional space and (5) spatial pattern of urban areas. Lastly, because of the dynamics of human activities and biophysical processes, an important final component is the change of urban form over (6) time. We discuss how a this urban form framework integrates into a broader discussion of urbanization.
Keywords
Ecosystem Services; Land-use; Reconceptualizing Land; Cellular-automata; Heterogeneity; Framework; Model; Emissions; Dynamics; Cities; Gis; Remote Sensing; Land Use; Land Cover; Urban Form; Urban Materials; Energy; Humans; Land Use And Land Cover Maps; Landscapes; Urban Areas; Urbanization
Habibnezhad, M.; Puckett, J.; Fardhosseini, M.S.; Jebelli, H.; Stentz, T.; Pratama, L.A.. (2019). Experiencing Extreme Height for the First Time: The Influence of Height, Self-Judgment of Fear and a Moving Structural Beam on the Heart Rate and Postural Sway During the Quiet Stance. Arxiv, 9 pp.
View Publication
Abstract
Falling from elevated surfaces is the main cause of death and injury at construction sites. Based on the Bureau of Labor Statistics (BLS) reports, an average of nearly three workers per day suffer fatal injuries from falling. Studies show that postural instability is the foremost cause of this disproportional falling rate. To study what affects the postural stability of construction workers, we conducted a series of experiments in the virtual reality (VR). Twelve healthy adults, all students at the University of Nebraska were recruited for this study. During each trial, participants heart rates and postural sways were measured as the dependent factors. The independent factors included a moving structural beam (MB) coming directly at the participants, the presence of VR, height, the participants self-judgment of fear, and their level of acrophobia. The former was designed in an attempt to simulate some part of the steel erection procedure, which is one of the key tasks of ironworkers. The results of this study indicate that height increase the postural sway. Self-judged fear significantly was found to decrease postural sway, more specifically the normalized total excursion of the center of pressure (TE), both in the presence and absence of height. Also, participants heart rates significantly increase once they are confronted by a moving beam in the virtual environment (VE), even though they are informed that the beam will not hit them. The findings of this study can be useful for training novice ironworkers that will be subjected to height and steel erection for the first time.
Keywords
Biocontrol; Biomechanics; Construction Industry; Ergonomics; Injuries; Mechanoception; Medical Computing; Occupational Safety; Personnel; Statistical Analysis; Virtual Reality; Extreme Height; Moving Structural Beam; Heart Rate; Postural Sway; Injury; Construction Sites; Labor Statistics Reports; Fatal Injuries; Postural Instability; Foremost Cause; Disproportional Falling Rate; Postural Stability; Construction Workers; Participants Heart Rates; Height Increase; Moving Beam
Moudon, Anne Vernez; Huang, Ruizhu; Stewart, Orion T.; Cohen-Cline, Hannah; Noonan, Carolyn; Hurvitz, Philip M.; Duncan, Glen E. (2019). Probabilistic Walking Models Using Built Environment and Sociodemographic Predictors. Population Health Metrics, 17(1).
View Publication
Abstract
BackgroundIndividual sociodemographic and home neighborhood built environment (BE) factors influence the probability of engaging in health-enhancing levels of walking or moderate-to-vigorous physical activity (MVPA). Methods are needed to parsimoniously model the associations.MethodsParticipants included 2392 adults drawn from a community-based twin registry living in the Seattle region. Objective BE measures from four domains (regional context, neighborhood composition, destinations, transportation) were taken for neighborhood sizes of 833 and 1666 road network meters from home. Hosmer and Lemeshow's methods served to fit logistic regression models of walking and MVPA outcomes using sociodemographic and BE predictors. Backward elimination identified variables included in final models, and comparison of receiver operating characteristic (ROC) curves determined model fit improvements.ResultsBuilt environment variables associated with physical activity were reduced from 86 to 5 or fewer. Sociodemographic and BE variables from all four BE domains were associated with activity outcomes but differed by activity type and neighborhood size. For the study population, ROC comparisons indicated that adding BE variables to a base model of sociodemographic factors did not improve the ability to predict walking or MVPA.ConclusionsUsing sociodemographic and built environment factors, the proposed approach can guide the estimation of activity prediction models for different activity types, neighborhood sizes, and discrete BE characteristics. Variables associated with walking and MVPA are population and neighborhood BE-specific.
Keywords
Walking; Confidence Intervals; Research Funding; Transportation; Logistic Regression Analysis; Built Environment; Socioeconomic Factors; Predictive Validity; Receiver Operating Characteristic Curves; Data Analysis Software; Descriptive Statistics; Psychology; Washington (state); Active Travel; Home Neighborhood Domains; Physical Activity; Physical-activity; United-states; Life Stage; Adults; Attributes; Health; Associations; Destination; Pitfalls
Way, Thaisa. (2019). What is the Urban Landscape and What Role in Urban History? Journal Of Urban History, 45(3), 595 – 600.
View Publication
Keywords
Urban; Landscapes; Modernism; Preservation; Architecture; Cities
Habibnezhad, Mahmoud; Puckett, Jay; Jebelli, Houtan; Karji, Ali; Fardhosseini, Mohammad Sadra; Asadi, Somayeh. (2020). Neurophysiological Testing for Assessing Construction Workers’ Task Performance at Virtual Height. Automation In Construction, 113.
View Publication
Abstract
Falling from heights is the primary cause of death and injuries at construction sites. As loss of balance has a fundamental effect on falling, it is important to understand postural regulation behavior during construction tasks at heights, especially those that require precise focus in an upright standing position (therefore, a dual-task demand on focus). Previous studies examined body sway during a quiet stance and dual tasks to understand latent factors affecting postural balance. Despite the success of these studies in discovering underlying factors, they lack a comprehensive analysis of a task's simultaneous cognitive load, postural sway, and visual depth. To address this limitation, this paper aims to examine construction workers' postural stability and task performance during the execution of visual construction tasks while standing upright on elevated platforms. To that end, two non-intrusive neurophysiological tests, a hand-steadiness task (HST) and a pursuit task (PT), were developed for construction tasks in a virtual environment (VE) as performance-based means to assess the cognitive function of workers at height. Workers' postural stability was measured by recording the mapped position of the Center of Pressure (COP) of the body on a posturography force plate, and the postural sway metrics subsequently calculated. A laboratory experiment was designed to collect postural and task performance data from 18 subjects performing the two batteries of tests in the virtual environment. The results demonstrated a significant decrease in the Root-Mean Square (RMS) of COP along the anterior-posterior axis during the Randomized Pursuit Task (RPT) and maximum body sway of the center of pressure (COP) in the mediolateral direction during both tests. Also, subjects exposed to high elevation predominately exhibit higher accuracy for RPT (P-value = 0.02) and lower accuracy for HST (P-value = 0.05). The results show that the combination of elevation-related visual depth and low-complexity dual tasks impairs task performance due to the elevation-induced visual perturbations and anxiety-driven motor responses. On the other hand, in the absence of visual depth at height, high task complexity surprisingly improves the pursuit tracking performance. As expected, during both tasks, alterations in postural control were manifested in the form of a body sway decrement as a compensatory postural strategy for accomplishing tasks at high elevation.
Keywords
Task Performance; Construction Workers; Test Design; Cognitive Load; Standing Position; Sitting Position; Neurophysiological Test; Postural Stability; Virtual Reality; Workers' Safety At Height; Fall-risk; Reaction-time; Fear; Real; Acrophobia; Balance; Safety
Lindell, Michael K.; Sorensen, John H.; Baker, Earl J.; Lehman, William P. (2020). Community Response to Hurricane Threat: Estimates of Household Evacuation Preparation Time Distributions. Transportation Research Part D-transport And Environment, 85.
View Publication
Abstract
Household evacuation preparation time distributions are essential when computing evacuation time estimates (ETEs) for hurricanes with late intensification or late changing tracks. Although evacuation preparation times have been assessed by expected task completion times, actual task completion times, and departure delays, it is unknown if these methods produce similar results. Consequently, this study compares data from one survey assessing expected task completion times, three surveys assessing actual task completion times, and three surveys assessing departure delays after receiving a warning. In addition, this study seeks to identify variables that predict household evacuation preparation times. These analyses show that the three methods of assessing evacuation preparation times produce results that are somewhat different, but the differences have plausible explanations. Household evacuation preparation times are poorly predicted by demographic variables, but are better predicted by variables that predict evacuation decisions-perceived storm characteristics, expected personal impacts, and evacuation facilitators.
Keywords
Travel Demand Model; Decision-making; Communication; Prediction; Simulation; Hurricane Evacuation Models; Preparation Time Distributions; Mobilization Time Distributions; Departure Delay Time Distributions; Social Milling
Shang, Luming; Migliaccio, Giovanni C. (2020). Demystifying Progressive Design Build: Implementation Issues and Lessons Learned through Case Study Analysis. Organization Technology And Management In Construction, 12(1), 2095 – 2108.
View Publication
Abstract
The design-build (DB) project delivery method has been used for several decades in the US construction market. DB contracts are usually awarded on the basis of a multicriteria evaluation, with price as one of the most salient criteria. To ensure the project's success, an owner usually has to invest enough time and effort during scoping and early design to define a program, scope, and budget, ready for procurement and price generation. However, this process can become a burden for the owner and may lengthen the project development duration. As an alternative to the traditional DB, the progressive design-build (PDB) approach permits the selection of the DB team prior to defining the project program and/or budget. PDB has the advantage of maintaining a single point of accountability and allowing team selection based mainly on qualifications, with a limited consideration of price. Under PDB, the selected team works with the project stakeholders during the early design stage, while helping the owner balance scope and budget. However, the key to the effectiveness of PDB is its provision for the ongoing and complete involvement of the owner in the early design phase. Due to the differences between PDB and the other project delivery methods (e.g., traditional DB), project teams must carefully consider several factors to ensure its successful implementation. The research team conducted a case study of the University of Washington's pilot PDB project to complete the West Campus Utility Plant (WCUP). This paper carefully explores and summarizes the project's entire delivery process (e.g., planning, solicitation, design, and construction), its organizational structures, and the project performance outcomes. The lessons learned from the WCUP project will contribute to best practices for future PDB implementation.
Keywords
Progressive Design Build; Project Delivery Method