Kerfeld, Cheryl I.; Hurvitz, Philip M.; Bjornson, Kristie F. (2021). Physical Activity Measurement in Children Who Use Mobility Assistive Devices: Accelerometry and Global Positioning System. Pediatric Physical Therapy, 33(2), 92 – 99.
View Publication
Abstract
Purpose: To explore the usefulness of combining accelerometry, global positioning systems, and geographic information systems, to describe the time spent in different locations and physical activity (PA) duration/count levels by location for 4 children with cerebral palsy (CP) who use assistive devices (AD). Methods: A descriptive multiple-case study. Results: Combining the 3 instruments was useful in describing and differentiating duration by location, and amount and location of PA across differing functional levels and AD. For example, the child classified with a Gross Motor Function Classification System (GMFCS) level II exhibited large amounts of PA in community settings. In contrast, the child classified with a GMFCS level V had small amounts of PA and spent most measured time at home. Conclusions: Combined accelerometry, global positioning system, and geographic information system have potential to capture time spent and amount/intensity of PA relative to locations within daily environments for children with CP who use AD.
Keywords
Cerebral-palsy; Objective Measures; Fitness; Youth; Disabilities; Adolescents; Exercise; Adults; Accelerometer; Cerebral Palsy; Environment; Global Positioning System; Mobility Assistive Devices; Physical Activity
Wang, Lan; Zhang, Surong; Yang, Zilin; Zhao, Ziyu; Moudon, Anne Vernez; Feng, Huasen; Liang, Junhao; Sun, Wenyao; Cao, Buyang. (2021). What County-level Factors Influence Covid-19 Incidence in the United States? Findings from the First Wave of the Pandemic. Cities, 118.
View Publication
Abstract
Effective control of the COVID-19 pandemic via appropriate management of the built environment is an urgent issue. This study develops a research framework to explore the relationship between COVID-19 incidence and influential factors related to protection of vulnerable populations, intervention in transmission pathways, and provision of healthcare resources. Relevant data for regression analysis and structural equation modeling is collected during the first wave of the pandemic in the United States, from counties with over 100 confirmed cases. In addition to confirming certain factors found in the existing literature, we uncover six new factors significantly associated with COVID-19 incidence. Furthermore, incidence during the lockdown is found to significantly affect incidence after the reopening, highlighting that timely quarantining and treating of patients is essential to avoid the snowballing transmission over time. These findings suggest ways to mitigate the negative effects of subsequent waves of the pandemic, such as special attention of infection prevention in neighborhoods with unsanitary and overcrowded housing, minimization of social activities organized by neighborhood associations, and contactless home delivery service of healthy food. Also worth noting is the need to provide support to people less capable of complying with the stay-at-home order because of their occupations or socio-economic disadvantage.
Keywords
Pandemics; Covid-19; Covid-19 Pandemic; Infection Prevention; Stay-at-home Orders; Structural Equation Modeling; United States; Communicable Disease Prevention; Influential Factors; Lockdown; Structural Equation Modeling (sem); Prevalence; Disease; Healthy Food; Social Activities; Counties; Neighborhoods; Housing; Built Environment; Prevention; Minimization; Socioeconomic Factors; Intervention; Health Care; Vulnerability; Occupations; Coronaviruses; Food Service; Disease Transmission; United States--us
Acolin, Arthur; Colburn, Gregg; Walter, Rebecca J. (2022). How Do Single-Family Homeowners Value Residential and Commercial Density? It Depends. Land Use Policy, 113.
View Publication
Abstract
This paper develops estimates of the relationship between local density and single-family home values using 2017 transactions for five U.S. metropolitan regions: Chicago, Los Angeles, Minneapolis, Philadelphia, Seattle. Proposals to build new commercial and residential development projects that would increase local density commonly face opposition from local homeowners. Academic literature links the response from homeowners to concerns that higher density is associated with lower property values but there is limited empirical evidence establishing this relationship at the local level. We find a positive and significant relationship between density and house value in the core area of the five metropolitan regions we analyze. Within 7.5 miles of the center of these metropolitan regions, a 10% increase in surrounding built area density is associated with a 1.1–1.9% increase in house prices per square foot. For outlying areas, the estimates are smaller and even negative in several cases. We instrument density based on topographic and soil characteristics and find similar results. These findings point to the need for a more nuanced discussion of the relationship between local density and housing values.
Keywords
Population Density; Soil Density; Single Family Housing; Home Ownership; Housing Development; Housing Discrimination; Home Prices; Los Angeles (calif.); Density; Single-family House Value; Urban Form; Residential Development; Real Estate; Property Values; Residential Density; Development Programs; Housing; Estimates; Metropolitan Areas; Development Projects; Empirical Analysis; Families & Family Life; Soil Characteristics
Chapman, Cameron; Horner, Richard R. (2010). Performance Assessment of a Street-Drainage Bioretention System. Water Environment Research, 82(2), 109 – 119.
View Publication
Abstract
Event-based, flow-paced composite sampling was carried out at the inlet and outlet of a street-side bioretention facility in Seattle, Washington, to assess its ability to reduce street runoff quantity and pollutants. Over 2.5 years, 48 to 74% of the incoming runoff was lost to infiltration and evaporation. Outlet pollutant concentrations were significantly lower than those at the inlet for nearly all monitored constituents. In terms of mass, the system retained most of the incoming pollutants. Besides soluble reactive phosphorus (the mass of which possibly increased), dissolved copper was the least effectively retained; at least 58% of dissolved copper (and potentially as much as 79%) was captured by the system. Motor oil was removed most effectively, with 92 to 96% of the incoming motor oil not leaving the system. The results indicate that bioretention systems can achieve a high level of runoff retention and treatment in real-weather conditions. Water Environ. Res., 82, 109 (2010).
Keywords
Stormwater; Removal; Runoff; Bioretention; Water Quality Monitoring; Best Management Practices; Low-impact Development
Cuo, Lan; Beyene, Tazebe K.; Voisin, Nathalie; Su, Fengge; Lettenmaier, Dennis P.; Alberti, Marina; Richey, Jeffrey E. (2011). Effects of Mid-Twenty-first Century Climate and Land Cover Change on the Hydrology Of the Puget Sound Basin, Washington. Hydrological Processes, 25(11), 1729 – 1753.
View Publication
Abstract
The distributed hydrology-soil-vegetation model (DHSVM) was used to study the potential impacts of projected future land cover and climate change on the hydrology of the Puget Sound basin, Washington, in the mid-twenty-first century. A 60-year climate model output, archived for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), was statistically downscaled and used as input to DHSVM. From the DHSVM output, we extracted multi-decadal averages of seasonal streamflow, annual maximum flow, snow water equivalent (SWE), and evapotranspiration centred around 2030 and 2050. Future land cover was represented by a 2027 projection, which was extended to 2050, and DHSVM was run (with current climate) for these future land cover projections. In general, the climate change signal alone on sub-basin streamflow was evidenced primarily through changes in the timing of winter and spring runoff, and slight increases in the annual runoff. Runoff changes in the uplands were attributable both to climate (increased winter precipitation, less snow) and land cover change (mostly reduced vegetation maturity). The most climatically sensitive parts of the uplands were in areas where the current winter precipitation is in the rain-snow transition zone. Changes in land cover were generally more important than climate change in the lowlands, where a substantial change to more urbanized land use and increased runoff was predicted. Both the annual total and seasonal distribution of freshwater flux to Puget Sound are more sensitive to climate change impacts than to land cover change, primarily because most of the runoff originates in the uplands. Both climate and land cover change slightly increase the annual freshwater flux to Puget Sound. Changes in the seasonal distribution of freshwater flux are mostly related to climate change, and consist of double-digit increases in winter flows and decreases in summer and fall flows. Copyright (C) 2010 John Wiley & Sons, Ltd.
Keywords
Joaquin River-basin; Water-resources; Change Impacts; Model; Sensitivity; Temperature; Prediction; Streamflow; Forecasts; Humidity; Hydrologic Prediction; Climate Change Impacts; Land Cover Change Impacts
Kondo, Michelle C.; Rivera, Rebeca; Rullman, Stan, Jr. (2012). Protecting the Idyll but Not the Environment: Second Homes, Amenity Migration and Rural Exclusion in Washington State. Landscape And Urban Planning, 106(2), 174 – 182.
View Publication
Abstract
Researchers are beginning to take notice of amenity migration processes and their impacts in exurban areas of the U.S. Our research explores second-home owners as contributors to processes of amenity migration. Using a mixed-method approach combining spatial data and interview analyses, we investigate both the structural and behavioral aspects of amenity migration in San Juan and Okanogan counties of Washington State. Results indicate that second-home owners' desire for privacy and escape is reflected in patterns of spatial isolation among second homes in the study area. These patterns have potentially significant ecological effects. Second-home owners also seek to protect their investments by supporting regulations which support their version of a rural idyll. Therefore, policy-makers should be wary of strategies to promote regulations which promote aesthetic rather than social and ecological function. (C) 2012 Elsevier B.V. All rights reserved.
Keywords
Land-use; Colorado Mountains; Political Ecology; Landscape Change; United-states; Gentrification; Residents; Attitudes; Growth; West; Amenity Migration; Second Homes; Mixed-method Research
Cheng, Tao; Teizer, Jochen; Migliaccio, Giovanni C.; Gatti, Umberto C. (2013). Automated Task-Level Activity Analysis through Fusion of Real Time Location Sensors and Worker’s Thoracic Posture Data. Automation In Construction, 29, 24 – 39.
View Publication
Abstract
Knowledge of workforce productivity and activity is crucial for determining whether a construction project can be accomplished on time and within budget. Significant work has been done on improving and assessing productivity and activity at task, project, or industry levels. Task level productivity and activity analysis are used extensively within the construction industry for various purposes, including cost estimating, claim evaluation, and day-to-day project management. The assessment is mostly performed through visual observations and after-the-fact analyses even though previous studies show automatic translation of operations data into productivity information and provide spatial information of resources for specific construction operations. An original approach is presented that automatically assesses labor activity. Using data fusion of spatio-temporal and workers' thoracic posture data, a framework was developed for identifying and understanding the worker's activity type over time. This information is used to perform automatic work sampling that is expected to facilitate real-time productivity assessment. Published by Elsevier B.V.
Keywords
Detectors; Construction Projects; Labor Supply; Real-time Control; Construction Costs; Project Management; Machine Translating; Activity And Task Analysis; Construction Worker; Data Fusion; Health; Location Tracking; Productivity; Safety; Sensors; Thoracic Posture Data; Workforce; Construction Industry; Costing; Labour Resources; Sensor Fusion; Real-time Productivity Assessment; Automatic Work Sampling; Worker Activity Type; Spatio-temporal Data; Labor Activity Assessment; Construction Operations; Spatial Information; Productivity Information; Day-to-day Project Management; Claim Evaluation; Cost Estimating; Task Level Productivity; Industry Levels; Project Levels; Construction Project; Workforce Activity; Workforce Productivity; Worker Thoracic Posture Data; Real Time Location Sensors Fusion; Automated Task-level Activity Analysis; Construction-industry Productivity
Way, Thaisa. (2013). Landscapes of Industrial Excess: A Thick Sections Approach to Gas Works Park. Journal Of Landscape Architecture, 8(1), 28 – 39.
View Publication
Abstract
Gas Works Park in Seattle, WA, designed by Richard Haag Associates and recently listed on the National Register of Historic Landmarks, serves as one of the earliest post-industrial sites to be transformed into a public park through remediation and reclamation. The radical nature of the park lies in its adaptive reuse of waste landscapes, not merely ameliorating contaminated land but transforming it to serve the public. Although officials and residents called for the remains of the industrial plant to be removed, Haag convinced the public to retain elements of the industrial apparatus and, more importantly, to retain and treat the polluted soils. Previous scholarship focuses primarily on the architectural elements, leaving the landscape as mere setting. This article proposes a site narrative as read through the landform. It suggests an alternative reading that gives voice to the site's toxic history.
Keywords
Gas Works Park; Polluted Landscapes; Post-industrial Landscape; Richard Haag; Thick Sections
Gatti, Umberto C.; Schneider, Suzanne; Migliaccio, Giovanni C. (2014). Physiological Condition Monitoring of Construction Workers. Automation In Construction, 44, 227 – 233.
View Publication
Abstract
Monitoring of workers' physiological conditions can potentially enhance construction workforce productivity, safety, and well-being. Recently, Physiological Status Monitors (PSMs) were validated as an accurate technology to assess physiological conditions during typical sport science and medicine testing procedures (e.g., treadmill and cycle ergometer protocols). However, sport science and medicine testing procedures cannot simulate routine construction worker movements in a comprehensive manner. Thus, this paper investigated the validity of two PSMs by comparing their measurements with gold standard laboratory instruments' measurements at rest and during dynamic activities resembling construction workforce's routine activities. Two physiological parameters such as heart rate and breathing rate were considered. Ten apparently healthy subjects participated in the study. One of the PSMs proved to be a viable technology in assessing construction workers' heart rate (correlation coefficient >= 0.74; percentage of differences within +/- 11 bpm >= 84.8%). (C) 2014 Elsevier B.V. All rights reserved,
Keywords
Construction Workers; Labor Supply; Labor Productivity; Well-being; Health Status Indicators; Heart Rate Monitoring; Physiology; Construction Management; Construction Worker; Ergonomics; Occupational Health And Safety; Physiological Status Monitoring Technology; Productivity; Work Physiological Demand; Work Physiology; Construction Industry; Monitoring; Occupational Safety; Medicine Testing; Sport Science; Psm; Physiological Status Monitors; Safety; Construction Workforce Productivity; Workers Monitoring; Physiological Condition Monitoring; Heart-rate Monitors; R-r Intervals; Statistical-methods; Respiratory Rate; Physical Load; Polar S810; Strain; Validity; Reliability; Validation
Stewart, Orion; Moudon, Anne Vernez; Claybrooke, Charlotte. (2014). Multistate Evaluation of Safe Routes to School Programs. American Journal Of Health Promotion, 28, S89 – S96.
View Publication
Abstract
Purpose. State Safe Routes to School (SRTS) programs provide competitive grants to local projects that support safe walking, bicycling, and other modes of active school travel (AST). This study assessed changes in rates of AST after implementation of SRTS projects at multiple sites across four states. Design. One-group pretest and posttest. Setting. Florida, Mississippi, Washington, and Wisconsin. Subjects. Convenience sample of 48 completed SRTS projects and 53 schools affected by a completed SRTS project. Intervention. State-funded SRTS project. Measures. AST was measured as the percentage of students walking, bicycling, or using any AST mode. SRTS project characteristics were measured at the project, school, and school neighborhood levels. Analysis. Paired-samples t-tests were used to assess changes in AST. Bivariate analysis was used to identify SRTS project characteristics associated with increases in AST. Data were analyzed separately at the project (n = 48) and school (n = 53) levels. Results. Statistically significant increases in AST were observed across projects in all four states. All AST modes increased from 12.9% to 17.6%; walking from 9.8% to 14.2%; and bicycling from 2.5% to 3.0%. Increases in rates of bicycling were negatively correlated with baseline rates of bicycling. Conclusion. State-funded SRTS projects are achieving one of the primary program goals of increasing rates of AST. They may be particularly effective at introducing bicycling to communities where it is rare. The evaluation framework introduced in this study can be used to continue tracking the effect of state SRTS programs as more projects are completed.
Keywords
Transportation Of School Children; Physical Activity Measurement; Health Promotion; Cycling; Walking; School Children -- United States; Bicycling; Children; Commuting; Health Focus: Fitness/physical Activity; Manuscript Format: Research; Outcome Measure: Behavioral; Prevention Research; Research Purpose: Program Evaluation; Schools; Setting: School; Strategy: Skill Building/behavior Change, Built Environment; Study Design: Quasi-experimental; Target Population Age: Youth; Target Population Circumstances: Geographic Location; Physical-activity; Mental-health; Travel; Association; Validity; Mode; Bus