Skip to content

The Influence of Urban Design Packages on Home Values

Bitter, Christopher; Krause, Andy. (2017). The Influence of Urban Design Packages on Home Values. International Journal Of Housing Markets And Analysis, 10(2), 184 – 203.

View Publication

Abstract

Purpose The purpose of this study is to examine the impact of neighborhood design templates on residential home values in King County, WA, USA. Previous research examines a number of individual design factors; this study combines these factors into typologies and tests for the impacts of the composite set of design features. Design/methodology/approach The study analyzes over 27,000 home sales with a hedonic price model to measure the impacts across three large, regional submarkets. Neighborhood design categories are developed using a cluster analysis on a set of individual neighborhood attributes. Findings The key finding from this research is that the impact of more traditional (“urban”) design packages on home values is highly contextual. For the older and denser neighborhoods in the study area, a more traditional design results in a significantly positive impact on home values. In the new and more suburban regions of the study area, this effect is not found. Originality/value Prior work focused on valuing design attributes individually. The study argues that neighborhood design is better conceived of as a “package”, as the value of a given design element may depend on other co-located attributes. This is the first study, to the authors’ knowledge, to treat physical neighborhood design variables as a composite whole and to attempt to value their impact on home values as such.

Keywords

Regional Development; Packages; Cluster Analysis; Suburban Areas; Residential Areas; Housing; Design; Connectivity; Property Values; Urban Planning; Emission Standards; Neighborhoods; Urban Areas; Influence; Household Utilities; Design Factors; Regional Analysis; Housing Prices; Land Use; Tax Assessments; Urbanism

Differences in Behavior, Time, Location, and Built Environment between Objectively Measured Utilitarian and Recreational Walking

Kang, Bumjoon; Moudon, Anne V.; Hurvitz, Philip M.; Saelens, Brian E. (2017). Differences in Behavior, Time, Location, and Built Environment between Objectively Measured Utilitarian and Recreational Walking. Transportation Research: Part D, 57, 185 – 194.

View Publication

Abstract

Objectives: Utilitarian and recreational walking both contribute to physical activity. Yet walking for these two purposes may be different behaviors. We sought to provide operational definitions of utilitarian and recreational walking and to objectively measure their behavioral, spatial, and temporal differences in order to inform transportation and public health policies and interventions. Methods: Data were collected 2008-2009 from 651 Seattle-King County residents, wearing an accelerometer and a GPS unit, and filling-in a travel diary for 7 days. Walking activity bouts were classified as utilitarian or recreational based on whether walking had a destination or not. Differences between the two walking purposes were analyzed, adjusting for the nested structure of walking activity within participants. Results: Of the 4905 observed walking bouts, 87.4% were utilitarian and 12.6% recreational walking. Utilitarian walking bouts were 45% shorter in duration (-12.1 min) and 9% faster in speed (+0.3 km/h) than recreational walking bouts. Recreational walking occurred more frequently in the home neighborhood and was not associated with recreational land uses. Utilitarian walking occurred in areas having higher residential, employment, and street density, lower residential property value, higher area percentage of mixed-use neighborhood destinations, lower percentage of parks/trails, and lower average topographic slope than recreational walking. Conclusion: Utilitarian and recreational walking are substantially different in terms of frequency, speed, duration, location, and related built environment. Policies that promote walking should adopt type-specific strategies. The high occurrence of recreational walking near home highlights the importance of the home neighborhood for this activity.

Keywords

Walking; Utilitarianism; Recreation; Behavioral Assessment; Built Environment; Physical Activity Measurement; Accelerometer; Active Transportation; Gps; Home And Non-home Based Walking; Pedestrian; Physical-activity; Us Adults; Accelerometer Data; Trip Purpose; Urban Form; Travel; Neighborhood; Distance; System

Lighting Energy Consumption in Ultra-Low Energy Buildings: Using a Simulation and Measurement Methodology to Model Occupant Behavior and Lighting Controls

Zhu, Panyu; Gilbride, Michael; Yan, Da; Sun, Hongshan; Meek, Christopher. (2017). Lighting Energy Consumption in Ultra-Low Energy Buildings: Using a Simulation and Measurement Methodology to Model Occupant Behavior and Lighting Controls. Building Simulation, 10(6), 799 – 810.

View Publication

Abstract

As building owners, designers, and operators aim to achieve significant reductions in overall energy consumption, understanding and evaluating the probable impacts of occupant behavior becomes a critical component of a holistic energy conservation strategy. This becomes significantly more pronounced in ultra-efficient buildings, where system loads such as heating, cooling, lighting, and ventilation are reduced or eliminated through high-performance building design and where occupant behavior-driven impacts reflect a large portion of end-use energy. Further, variation in behavior patterns can substantially impact the persistence of any performance gains. This paper describes a methodology of building occupant behavior modeling using simulation methods developed by the Building Energy Research Center (BERC) at Tsinghua University using measured energy consumption data collected by the University of Washington Integrated Design Lab (UW IDL). The Bullitt Center, a six-story 4831 m(2) (52,000 ft(2)) net-positive-energy urban office building in Seattle, WA, USA, is one of the most energy-efficient buildings in the world (2013 WAN Sustainable Building of the Year Winner). Its measured energy consumption in 2015 was approximately 34.8 kWh/(m(2)a (TM) yr) (11 kBtu/(ft(2)a (TM) yr)). Occupant behavior exerts an out-sized influence on the energy performance of the building. Nearly 33% of the end-use energy consumption at the Bullitt Center consists of unregulated miscellaneous electrical loads (plug-loads), which are directly attributable to occupant behavior and equipment procurement choices. Approximately 16% of end-use energy is attributable to electric lighting which is also largely determined by occupant behavior. Key to the building's energy efficiency is employment of lighting controls and daylighting strategies to minimize the lighting load. This paper uses measured energy use in a 330 m(2) (3550 ft(2)) open office space in this building to inform occupant profiles that are then modified to create four scenarios to model the impact of behavior on lighting use. By using measured energy consumption and an energy model to simulate the energy performance of this space, this paper evaluates the potential energy savings based on different occupant behavior. This paper describes occupant behavior simulation methods and evaluates them using a robust dataset of 15 minute interval sub-metered energy consumption data. Lighting control strategies are compared via simulation results, in order to achieve the best match between occupant schedules, controls, and energy savings. Using these findings, we propose a simulation methodology that incorporates measured energy use data to generate occupant schedules and control schemes with the ultimate aim of using simulation results to evaluate energy saving measures that target occupant behavior.

Keywords

Control-systems; Patterns; Offices; Lighting Control; Ultra-low Energy Building; Occupant Behavior; Building Simulation; Energy Consumption

Feasibility of Using QR Codes in Highway Construction Document Management

Lee, Hyun Woo; Harapanahalli, Bharat Anand; Nnaji, Chukwuma; Kim, Jonghyeob; Gambatese, John. (2018). Feasibility of Using QR Codes in Highway Construction Document Management. Transportation Research Record, 2672(26), 114 – 123.

View Publication

Abstract

Highway construction occasionally takes place in remote locations, making its document management challenging especially when frequent document revisions occur. With the recent advancement of smartphones and tablets, Quick Response (QR) codes can provide project teams rapid and reliable access to up-to-date documents required for field operations. As a result, the use of QR codes can lead to a reduced need for traveling or meeting for document revisions, and reduce the amount of hardcopy documents and storage space. Despite the potential for significant benefits, there have been few studies aimed at assessing the feasibility of using QR codes in highway construction. In response, the objective of the study was to investigate the benefits of and barriers to using QR codes in highway construction for document management. To conduct the study, first a multi-step process was used, involving an online survey and interviews, with a goal of determining the status quo of highway construction in terms of document management and mobile information technology (IT). The results indicate that hardcopy documentation is still the most prevalent form of document management in highway construction, and hence there is an opportunity for implementing QR codes in conjunction with mobile IT. In the second part of the study, a time study using a real-world infrastructure project was conducted based on three activities: detail look up, specification check, and version check. As a result, the study found statistical evidence that using QR codes can lead to significant time savings.

Keywords

Highway Planning; Information Services; Road Construction; Document Management; Field Operation; Highway Construction; Infrastructure Project; Online Surveys; Quick Response Code; Remote Location; Statistical Evidence

Is There a Limit to Bioretention Effectiveness? Evaluation of Stormwater Bioretention Treatment Using a Lumped Urban Ecohydrologic Model and Ecologically Based Design Criteria

Wright, Olivia M.; Istanbulluoglu, Erkan; Horner, Richard R.; Degasperi, Curtis L.; Simmonds, Jim. (2018). Is There a Limit to Bioretention Effectiveness? Evaluation of Stormwater Bioretention Treatment Using a Lumped Urban Ecohydrologic Model and Ecologically Based Design Criteria. Hydrological Processes, 32(15), 2318 – 2334.

View Publication

Abstract

In this study, we developed the urban ecohydrology model (UEM) to investigate the role of bioretention on watershed water balance, runoff production, and streamflow variability. UEM partitions the land surface into pervious, impervious, and bioretention cell fractions. Soil moisture and vegetation dynamics are simulated in pervious areas and bioretention cells using a lumped ecohydrological approach. Bioretention cells receive runoff from a fraction of impervious areas. The model is calibrated in an urban headwater catchment near Seattle, WA, USA, using hourly weather data and streamflow observations for 3years. The calibrated model is first used to investigate the relationship between streamflow variability and bioretention cell size that receives runoff from different values of impervious area in the watershed. Streamflow variability is quantified by 2 indices, high pulse count (HPC), which quantifies the number of flow high pulses in a water year above a threshold, and high pulse range (HPR), which defines the time over which the pulses occurred. Low values of these indices are associated with improved stream health. The effectiveness of the modelled bioretention facilities are measured by their influence on reducing HPC and HPR and on flow duration curves in comparison with modelled fully forested conditions. We used UEM to examine the effectiveness of bioretention cells under rainfall regimes that are wetter and drier than the study area in an effort to understand linkages between the degree of urbanization, climate, and design bioretention cell size to improve inferred stream health conditions. In all model simulations, limits to the reduction of HPC and HPR indicators were reached as the size of bioretention cells grew. Bioretention was more effective as the rainfall regime gets drier. Results may guide bioretention design practices and future studies to explore climate change impacts on bioretention design and management.

Keywords

Performance Assessment; Hydrologic Alteration; Automated Techniques; Management-practices; Land-cover; Streams; Water; Impact; Area; Runoff; Bioretention; Ecohydrology; Green Infrastructure; Stormwater; Stream Health; Urban Hydrology; Evaluation; Urbanization; Watersheds; Soil Moisture; Water Balance; Stream Flow; Design; Variability; Ecological Monitoring; Computer Simulation; Storms; Climate Change; Duration; Water Runoff; Flow Duration Curves; Flow Duration; Cell Size; Soils; Duration Curves; Rainfall; Rivers; Cells; Headwaters; Surface Runoff; Dynamics; Rainfall Regime; Catchment Area; Design Criteria; Environmental Impact; Retention Basins; Soil Dynamics; Stream Discharge; Climatic Changes; Meteorological Data; Headwater Catchments

A Mixed VR and Physical Framework to Evaluate Impacts of Virtual Legs and Elevated Narrow Working Space on Construction Workers Gait Pattern

Habibnezhad, M.; Puckett, J.; Fardhosseini, M.S.; Pratama, L.A. (2019). A Mixed VR and Physical Framework to Evaluate Impacts of Virtual Legs and Elevated Narrow Working Space on Construction Workers Gait Pattern. Arxiv, 7 pp.

View Publication

Abstract

It is difficult to conduct training and evaluate workers' postural performance by using the actual job site environment due to safety concerns. Virtual reality (VR) provides an alternative to create immersive working environments without significant safety concerns. Working on elevated surfaces is a dangerous scenario, which may lead to gait and postural instability and, consequently, a serious fall. Previous studies showed that VR is a promising tool for measuring the impact of height on the postural sway. However, most of these studies used the treadmill as the walking locomotion apparatus in a virtual environment (VE). This paper was focused on natural walking locomotion to reduce the inherent postural perturbations of VR devices. To investigate the impact of virtual height on gait characteristics and keep the level of realism and feeling of presence at their highest, we enhanced the first-person-character model with "virtual legs". Afterward, we investigated its effect on the gait parameters of the participants with and without the presence of height. To that end, twelve healthy adults were asked to walk on a virtual loop path once at the ground level and once at the 17th floor of an unfinished structure. By quantitatively comparing the participants' gait pattern results, we observed a decrease in the stride length and increase in the gait duration of the participants exposed to height. At the ground level, the use of the enhanced model reduced participants' average stride length and height. The results of this study help us understand users' behaviors when they were exposed to elevated surfaces and establish a firm ground for gait stability analysis for the future height-related VR studies. We expect this developed VR platform can generate reliable results of VR application in more construction safety studies.

Keywords

Civil Engineering Computing; Construction Industry; Gait Analysis; Medical Computing; Occupational Safety; Virtual Reality; Construction Safety Studies; Mixed Vr; Virtual Legs; Construction Workers Gait Pattern; Immersive Working Environments; Postural Instability; Serious Fall; Postural Sway; Walking Locomotion Apparatus; Natural Walking Locomotion; Inherent Postural Perturbations; Vr Devices; Virtual Height; First-person-character Model; Gait Parameters; Virtual Loop Path; Stride Length; Gait Duration; Gait Stability Analysis; Safety Concerns; Vr Platform; Height-related Vr Studies

Motorcycle Taxi Programme is Associated with Reduced Risk of Road Traffic Crash among Motorcycle Taxi Drivers in Kampala, Uganda

Muni, Kennedy; Kobusingye, Olive; Mock, Charlie; Hughes, James P.; Hurvitz, Philip M.; Guthrie, Brandon. (2019). Motorcycle Taxi Programme is Associated with Reduced Risk of Road Traffic Crash among Motorcycle Taxi Drivers in Kampala, Uganda. International Journal Of Injury Control & Safety Promotion, 26(3), 294 – 301.

View Publication

Abstract

SafeBoda is a transportation company that provides road safety training and helmets to its motorcycle taxi drivers in Kampala. We sought to determine whether risk of road traffic crash (RTC) was lower in SafeBoda compared to regular (non-SafeBoda) motorcycle taxi drivers during a 6-month follow-up period. We collected participant demographic and behavioural data at baseline using computer-assisted personal interview, and occurrence of RTC every 2 months using text messaging and telephone interview from a cohort of 342 drivers. There were 85 crashes (31 in SafeBoda and 54 in regular drivers) during follow-up. Over the 6-month follow-up period, SafeBoda drivers were 39% less likely to be involved in a RTC than regular drivers after adjusting for age, possession of a driver's license, and education (RR: 0.61, 95% CI: 0.39-0.97, p = .04). These findings suggest that the SafeBoda programme results in safer driving and fewer RTCs among motorcycle taxi drivers in Kampala.

Keywords

Motorcyclists; Motorcycle Helmets; Text Messages; Telephone Interviewing; Motorcycles; Kampala (uganda); Uganda; Boda-boda; Crash; Injury; Road Safety; Injuries; Burden; Riders; Kenya; Traffic Accidents; Transportation; Risk Management; Crashes; Demographics; Transportation Safety; Short Message Service; Traffic; Traffic Accidents & Safety; Roads; Risk Reduction; Taxicabs; Protective Equipment; Drivers Licenses; Kampala Uganda

Rebaselining Asset Data for Existing Facilities and Infrastructure

Abdirad, Hamid; Dossick, Carrie Sturts. (2020). Rebaselining Asset Data for Existing Facilities and Infrastructure. Journal Of Computing In Civil Engineering, 34(1).

View Publication

Abstract

This paper introduces rebaselining as a workflow for collecting reliable and verifiable asset management data for existing facilities and infrastructure. Reporting on two action research case studies with two public owners in the US, this research structures rebaselining in four phases: (1) preparing technology enablers, (2) collecting data from existing documents, (3) conducting field verification, and (4) updating asset management databases. These workflows address some of the common challenges in managing existing assets, including the fast-paced changes in asset data requirements, the inaccuracies in data and documentation of these existing assets portfolios, and the need to update data and documents over their life cycle. The findings set the groundwork for implementing workflow by mapping the rebaselining business processes in each phase, listing the technological requirements for these processes, and explaining the feasibility and examples of customizing building information modeling (BIM) platforms for rebaselining workflows. This customization of BIM platforms aims to offer simplified solutions that reduce the facility management staff's need for advanced BIM software knowledge.

Keywords

Asset Management; Building Management Systems; Business Data Processing; Database Management Systems; Facilities Management; Production Engineering Computing; Project Management; Risk Analysis; Software Tools; Reliable Asset Management Data; Verifiable Asset Management Data; Action Research Case Studies; Public Owners; Research Structures; Technology Enablers; Asset Management Databases; Facility Management Staff; Rebaselining Workflows; Technological Requirements; Rebaselining Business Processes; Existing Assets Portfolios; Documentation; Asset Data Requirements; Managing Existing Assets; Information; Bim; Existing Buildings; Infrastructure; Asset Data; Rebaselining

Blue Seattle: Immanent Ethics and Contemporary Urbanisation

Harris, Keith. (2020). Blue Seattle: Immanent Ethics and Contemporary Urbanisation. Area, 52(2), 273 – 281.

View Publication

Abstract

This paper asserts that critical investigations into the urbanisation process should consider the actually existing ethics of the process itself, without defaulting to transcendent normative principles. Grounded in an ontology of immanence, as presented in Deleuze and Guattari's (9) political philosophy, I argue that attention must be paid to the production and transformation of normativity. Using the redevelopment of the South Lake Union (SLU) neighbourhood of Seattle - (in)famously home to Amazon, but largely envisioned and developed by Paul Allen's investment and philanthropic organisation, Vulcan - as an analytical starting point, this paper sketches out a profile of the blue dimension of the genesis of Seattle's environmental ethic, from early efforts to reshape the region's hydrology and address water pollution in Lake Washington, through efforts by governmental bodies and Vulcan to protect water quality and salmon habitat, and on to a large-scale infrastructure project - the Elliott Bay Seawall replacement - that includes features to enhance biodiversity and ecological functioning in the nearshore environment. In tracking these movements, I identify the emergence of an explicitly post-anthropocentric ethic from what initially appears as an aesthetic concern, while also highlighting the ongoing complexification of an earlier engineering ethic that dates back to the earliest attempts by settlers to manage the natural environment.

Keywords

Water Pollution; Urbanization; Water Quality; Ethics; Political Philosophy; Home Ownership; Seattle (wash.); Blue Space; Deleuze And Guattari; Immanence; Post-anthropocentrism; Seattle; Allen, Paul, 1953-2018; Deleuze; Post-anthropocentrism

Deep Neural Network Approach for Annual Luminance Simulations

Liu, Yue; Colburn, Alex; Inanici, Mehlika. (2020). Deep Neural Network Approach for Annual Luminance Simulations. Journal Of Building Performance Simulation, 13(5), 532 – 554.

View Publication

Abstract

Annual luminance maps provide meaningful evaluations for occupants' visual comfort and perception. This paper presents a novel data-driven approach for predicting annual luminance maps from a limited number of point-in-time high-dynamic-range imagery by utilizing a deep neural network. A sensitivity analysis is performed to develop guidelines for determining the minimum and optimum data collection periods for generating accurate maps. The proposed model can faithfully predict high-quality annual panoramic luminance maps from one of the three options within 30 min training time: (i) point-in-time luminance imagery spanning 5% of the year, when evenly distributed during daylight hours, (ii) one-month hourly imagery generated during daylight hours around the equinoxes; or (iii) 9 days of hourly data collected around the spring equinox, summer and winter solstices (2.5% of the year) all suffice to predict the luminance maps for the rest of the year. The DNN predicted high-quality panoramas are validated against Radiance renderings.

Keywords

Scattering Distribution-functions; Daylight Performance; Glare; Model; Prediction; Daylighting Simulation; Luminance Maps; Machine Learning; Neural Networks; Hdr Imagery; Panoramic View