Gambatese, John A.; Pestana, Catarina; Lee, Hyun Woo. (2017). Alignment between Lean Principles and Practices and Worker Safety Behavior. Journal Of Construction Engineering And Management, 143(1).
View Publication
Abstract
Alignment and synergy between the areas of lean construction and safety management are expected because all near misses and injury incidents represent waste from the lean perspective. This paper describes a research study of lean and safety principles and practices with regards to worker behavior and safety practices. Specifically, the study aimed to investigate the extent of alignment between lean construction principles/practices and worker behaviors associated with construction safety. To conduct the study, the researchers used a multistep process involving a comprehensive literature review, document content analyses by an expert panel, and a survey of industry practitioners knowledgeable about lean construction. The findings support the perspective that many similarities exist between the application and impacts of lean and safety principles and practices. Lean practitioners surveyed believe that implementation of the last planner system as a lean practice is most beneficial to the following safety practices: management commitment, preproject planning, and pretask planning. The present study revealed that lean principles and practices can provide a valuable opportunity to further improve construction worker safety; however, the findings show that there is a difference between lean construction and safety management practices, revealing a gap with respect to worker behavior. Understanding and eliminating this gap is important for the industry to realize the full benefit that lean principles and practices can have on worker safety. To do so, the authors suggest expanding lean practices to further directly engage field workers and address worker behavior issues along with carefully communicating the lean message to construction personnel. (C) 2016 American Society of Civil Engineers.
Keywords
Construction Industry; Injuries; Lean Production; Occupational Safety; Planning; Lean Principles; Lean Construction; Safety Management Practices; Injury Incidents; Worker Behaviors; Construction Safety; Document Content Analysis; Management Commitment; Preproject Planning; Pretask Planning; Construction Worker Safety Behavior; Construction Accident Causality; Risk; Lean Design; Worker Behavior; Safety; Labor And Personnel Issues
Liang, Huakang; Lin, Ken-yu; Zhang, Shoujian; Su, Yikun. (2018). The Impact Of Coworkers’ Safety Violations On An Individual Worker: A Social Contagion Effect Within The Construction Crew. International Journal Of Environmental Research And Public Health, 15(4).
View Publication
Abstract
This research developed and tested a model of the social contagion effect of coworkers' safety violations on individual workers within construction crews. Both situational and routine safety violations were considered in this model. Empirical data were collected from 345 construction workers in China using a detailed questionnaire. The results showed that both types of safety violations made by coworkers were significantly related to individuals' perceived social support and production pressure. Individuals' attitudinal ambivalence toward safety compliance mediated the relationships between perceived social support and production pressure and both types of individuals' safety violations. However, safety motivation only mediated the effects of perceived social support and production pressure on individuals' situational safety violations. Further, this research supported the differences between situational and routine safety violations. Specifically, we found that individuals were more likely to imitate coworkers' routine safety violations than their situational safety violations. Coworkers' situational safety violations had an indirect effect on individuals' situational safety violations mainly through perceived social support and safety motivation. By contrast, coworkers' routine safety violations had an indirect effect on individuals' routine safety violations mainly through perceived production pressure and attitudinal ambivalence. Finally, the theoretical and practical implications, research limitations, and future directions were discussed.
Keywords
Health-care Settings; Job Demands; Attitudinal Ambivalence; Industry Development; Workplace Safety; Behavior; Climate; Model; Risk; Employee; Social Contagion; Situational Safety Violations; Routine Safety Violations; Social Learning; Social Information Processing
Kim, Yong-Woo; Rhee, Byong-Duk. (2020). The Impact of Empowering Front-Line Managers on Planning Reliability and Project Schedule Performance. Journal Of Management In Engineering, 36(3).
View Publication
Abstract
This study applies empowerment theory to production planning at the level of frontline managers in a construction project. Using structural equation modeling, we investigate how empowering frontline managers impacts their planning performance. In contrast to prior studies, we find that although psychological empowerment of frontline managers has no direct effect on their production planning reliability or scheduling performance, it has an indirect effect on planning reliability and scheduling performance, as long as the organization supports the empowerment structurally during production planning. This implies that a project manager should provide frontline managers at the operational level with proper formal and informal authority over workflow development, shielding, and resource allocation when planning production in order to enhance job performance through psychological empowerment. This study contributes to the body of knowledge on construction management by exploring the impact of psychological and structural empowerment of frontline managers on their performance of production planning reliability and scheduling performance.
Keywords
Psychological Empowerment; Work; Model; Variables; System; Job; Planning Reliability; Production Planning; Scheduling Performance; Structural Empowerment; Structural Equation Modeling
Su, Shu; Li, Xiaodong; Zhu, Chen; Lu, Yujie; Lee, Hyun Woo. (2021). Dynamic Life Cycle Assessment: A Review of Research for Temporal Variations in Life Cycle Assessment Studies. Environmental Engineering Science, 38(11), 1013 – 1026.
View Publication
Abstract
Life cycle assessment (LCA) is a comprehensive and important environmental management tool around the world. However, lacking temporal information has been a major challenge. In the past decade, dynamic LCA (DLCA), which incorporates temporal variations into assessment, has been an emerging research topic with increasing publications. A timely comprehensive review is needed to present current progress and discuss future directions. This article reviews 144 DLCA articles quantitatively and qualitatively. A bibliometric approach is adopted to conduct co-occurrence analysis and cluster analysis of DLCA studies. The research progress, approaches, and limitations of three temporal variation types (i.e., dynamic life cycle inventory, dynamic characterization factors, and dynamic weighting factors) in DLCA studies are systematically analyzed and discussed. It is concluded that: (1) dynamic inventory analysis is usually conducted by collecting time-differentiated data at each time step. Field monitoring, simulation, scenario analysis, and prediction based on historical data are common approaches. (2) Dynamic characterization studies primarily focus on two impact categories: global warming and toxicity. More studies are in need. (3) Various methods and indicators (i.e., dynamic pollution damage cost, temporal environmental policy targets, and discount rates) are used to solve the dynamic weighting issue, and they have specific limitations. Finally, three interesting topics are discussed: comparison between dynamic and static results, the large data amount issue, and the trend of tools development. This review offers a holistic view on temporal variations in DLCA studies and provides reference and directions for future dynamic studies.
Keywords
Literature Reviews; Cluster Analysis (statistics); Global Warming; Environmental Management; Discount Prices; Emission Inventories; Dynamic Characterization; Dynamic Inventory Analysis; Dynamic Weighting; Environmental Impact; Life Cycle Assessment; Temporal Variation; Cluster Analysis; Life Cycle; 'current; Dynamic Inventory Analyse; Dynamic Lca; Environmental Management Tool; Inventory Analysis; Research Topics; Temporal Information; Dependent Climate Impact; Greenhouse-gas Emission; Biogenic Carbon; Assessment Framework; Fresh-water; Electricity-generation; Energy Efficiency; Wheat Production; Embodied Energy; Time
El-Anwar, Omar; El-Rayes, Khaled; Elnashai, Amr. (2010). Minimization of Socioeconomic Disruption for Displaced Populations Following Disasters. Disasters, 34(3), 865 – 883.
View Publication
Abstract
In the aftermath of catastrophic natural disasters such as hurricanes, tsunamis and earthquakes, emergency management agencies come under intense pressure to provide temporary housing to address the large-scale displacement of the vulnerable population. Temporary housing is essential to enable displaced families to reestablish their normal daily activities until permanent housing solutions can be provided. Temporary housing decisions, however, have often been criticized for their failure to fulfil the socioeconomic needs of the displaced families within acceptable budgets. This paper presents the development of (1) socioeconomic disruption metrics that are capable of quantifying the socioeconomic impacts of temporary housing decisions on displaced populations; and (2) a robust multi-objective optimization model for temporary housing that is capable of simultaneously minimizing socioeconomic disruptions and public expenditures in an effective and efficient manner. A large-scale application example is optimized to illustrate the use of the model and demonstrate its capabilities ingenerating optimal plans for realistic temporary housing problems.
Keywords
Natural Disasters; Hurricanes; Disaster Relief; Temporary Housing; Tsunamis; Multi-objective Optimization; Post-disaster Recovery; Social Welfare; Socioeconomic Disruption
El-Anwar, Omar. (2013). Maximising the Net Social Benefit of the Construction of Post-Disaster Alternative Housing Projects. Disasters, 37(3), 489 – 515.
View Publication
Abstract
The widespread destruction that follows large-scale natural disasters, such as Hurricane Katrina in August 2005, challenges the efficacy of traditional temporary housing methods in providing adequate solutions to housing needs. Recognising these housing challenges, the Congress of the United States allocated, in 2006, USD 400 million to the Department of Homeland Security to support Alternative Housing Pilot Programs, which are intended to explore the possibilities of providing permanent and affordable housing to displaced families instead of traditional temporary housing. This paper presents a new methodology and optimisation model to identify the optimal configurations of post-shelter housing arrangements to maximise the overall net socioeconomic benefit. The model is capable of quantifying and optimising the impacts of substituting temporary housing with alternative housing on the social and economic welfare of displaced families as well as the required additional costs of doing so. An application example is presented to illustrate the use of the model and its capabilities.
Keywords
Public Housing; Temporary Housing; Hurricane Katrina, 2005; Natural Disasters; Socioeconomic Factors; Mathematical Models; Mathematical Optimization; United States; Alternative Housing Pilot Programs; Optimisation; Socioeconomic Benefit; Disasters
Hyun Woo Lee; Anderson, S.M.; Yong-Woo Kim; Ballard, G.. (2014). Advancing Impact of Education, Training, and Professional Experience on Integrated Project Delivery. Practice Periodical On Structural Design And Construction, 19(1), 8 – 14.
View Publication
Abstract
With the increased interest in applying integrated forms of project delivery to complex and uncertain construction projects, the building industry has been experiencing an increased demand for integrated project delivery (IPD). With the trend, many empirical studies have examined the collaborative characteristics of IPD and reported that participants must make the necessary transition for its contractual, technological, and cultural requirements. However, little study has been done to investigate relevant education, training, or professional experience that can support the transition. In response, this study used an online survey that was designed to investigate the level and type of education, training, and professional experience of project members and their corresponding level of background knowledge for each IPD requirement. The key survey findings include (1) project members have the highest level of background knowledge on the cultural requirements of IPD, but the lowest level on the technological requirements; (2) the group with more design-build experience has more background knowledge; (3) the group that received an IPD kick-off training has more background knowledge; and (4) having a lean construction class can prepare students for the IPD environment. It is expected that the survey findings will advance the education, training, and levels of background knowledge of IPD participants, which will enhance their IPD experience accordingly.
Keywords
Buildings (structures); Construction Industry; Contracts; Cultural Aspects; Industrial Training; Professional Aspects; Project Management; Construction Project; Building Industry; Integrated Project Delivery; Ipd; Contractual Requirement; Cultural Requirement; Professional Experience; Design-build Experience; Training Impact; Education Impact
Chi, Nai-wen; Lin, Ken-yu; El-Gohary, Nora; Hsieh, Shang-hsien. (2016). Evaluating the Strength of Text Classification Categories for Supporting Construction Field Inspection. Automation In Construction, 64, 78 – 88.
View Publication
Abstract
Field inspection is a common approach to the prevention of on-site accidents in the construction industry, which aims to identify and correct violations before they result in accidents. While conducting a field inspection, quite often safety professionals need to consult applicable construction safety standards. By doing so, they can make informed judgments on the violations and reference applicable standards. Text classification (TC) can be used to classify safety standards based on the types and causes of violations. Safety professionals can therefore use violation types and causes as indices to quickly locate applicable standards. Defining TC categories (or labels) is the first important step in performing TC, because satisfactory results cannot be achieved without appropriate TC categories. Researchers often determine applicable TC categories based on the important topics within a knowledge domain. However, not all TC categories can yield satisfactory TC results because some of them are not associated with strong and specific keywords that can be identified by text classifiers. This paper proposes a methodology with two strength measures for evaluating the appropriateness of candidate TC categories. The measures were tested on two alternative sets of candidate categories that were drafted for supporting construction field inspections. The results showed that the measures could accurately predict the relative TC performance and the satisfaction levels (satisfactory or unsatisfactory) of TC categories. Beyond the construction domain, this research provides a generalized procedure for evaluating the strength of candidate TC categories. (C) 2016 Elsevier B.V. All rights reserved.
Keywords
Accident Prevention; Classification; Construction Industry; Inspection; Occupational Safety; Standards; Text Classification Categories; Construction Field Inspection; On-site Accident Prevention; Violations; Safety Professionals; Construction Safety Standards; Candidate Tc Categories; Reference Applicable Standards; Information; Model; Construction Safety; Field Inspection; Text Classification
Lee, Wonil; Lin, Ken-yu; Seto, Edmund; Migliaccio, Giovanni C. (2017). Wearable Sensors For Monitoring On-duty And Off-duty Worker Physiological Status And Activities In Construction. Automation In Construction, 83, 341 – 353.
View Publication
Abstract
Total Worker Health (R) (TWH) integrates occupational health and safety with the promotion of workers' off-duty wellbeing. Wearable sensors (e.g., activity trackers and physiological monitors) have facilitated personalized objective measurement of workers' health and wellbeing. Furthermore, the TWH concept is relevant to construction workers, especially roofing workers, as they encounter high on-duty health and safety risks and have poor off-duty lifestyles. This study examined the reliability and usability of wearable sensors for monitoring roofing workers' on-duty and off-duty activities. The results demonstrated the usability of these sensors and recommended a data collection period of three consecutive days for obtaining an intraclass correlation coefficient of 0.75 for heart rate, energy expenditure, metabolic equivalents, and sleep efficiency. The participants exhibited significant variations in their physical responses, health statuses, and safety behaviors. Moreover, several issues were identified in the application of wearable sensors to TWH evaluations for construction workers including roofers.
Keywords
Construction Workers; Wearable Technology; Employee Health Promotion; Roofing Industry; Body Sensor Networks; Health; Construction Safety And Health; Usability Study; Wearable Sensors; Worker Monitoring; Worker Physiology; Construction Industry; Ergonomics; Occupational Health; Occupational Safety; Patient Monitoring; Personnel; Roofs; Sleep; Off-duty Worker Physiological Status; Total Worker Health®; Off-duty Wellbeing; Activity Trackers; Physiological Monitors; Twh Concept; On-duty Health; Safety Risks; Off-duty Lifestyles; Monitoring Roofing Workers; Off-duty Activities; Health Statuses; Heart-rate-variability; Energy-expenditure; Health Protection; Physical-activity; Validity; Reliability; Validation; Promotion; Productivity; Actigraph
Lin, Ken-yu; Lee, Wonil; Azari, Rahman; Migliaccio, Giovanni C. (2018). Training Of Low-literacy And Low-english-proficiency Hispanic Workers On Construction Fall Fatality. Journal Of Management In Engineering, 34(2).
View Publication
Abstract
The construction industry has made extensive efforts to improve the safety of its labor force through various approaches, including training. However, many construction workers in the United States are recent immigrants who lack English proficiency and do not possess sufficient literacy levels in their own language for training comprehension. This reduces the effectiveness of traditional text-dominated translated training materials, which depend on both literacy and proficiency in a language. Thus, in this study, the authors used three-dimensional (3D) visualization to overcome the communication barriers that hinder effective safety training for low-literacy (LL) and low-English-proficiency (LEP) construction workers. This article summarizes the contributions of a study sponsored by the Occupational Safety and Health Administration (OSHA) Susan Harwood Training Grant Program; it describes the methodology to develop scenario-based 3D training materials on fall safety for LL and LEP workers and to validate the effectiveness of the materials. The results show that 3D training materials improve interaction between trainer and trainee during safety training, facilitate learning processes, and can overcome some of the communication barriers that hinder effective safety training. (c) 2017 American Society of Civil Engineers.
Keywords
Chemical Hazards; Computer Based Training; Construction Industry; Hazardous Materials; Industrial Training; Occupational Health; Occupational Safety; Personnel; Safety; Low-literacy; Low-english-proficiency Hispanic Workers; Construction Fall Fatality; Extensive Efforts; Labor Force; Construction Workers; English Proficiency; Sufficient Literacy Levels; Training Comprehension; Training Materials; Three-dimensional Visualization; Communication Barriers; Effective Safety Training; Health Administration Susan Harwood Training Grant Program; Fall Safety; Occupational Injuries; United-states; Industry; Health; Education; Issues; Occupational Health And Safety; Training; Visualization; Fall Protection; Case Study