Skip to content

Quantifying The Impacts Of Failures Of Departments Of Transportation Building Systems On Road System Users

Gatti, Umberto C.; El-anwar, Omar; Migliaccio, Giovanni C.; Lin, Ken-yu; Medina, Yvonne. (2014). Quantifying The Impacts Of Failures Of Departments Of Transportation Building Systems On Road System Users. Transportation Research Record, 2440, 85 – 93.

View Publication

Abstract

Because of the financial crisis of 2007 to 2008 and the subsequent economic downturn, funding for transportation agencies has been consistently reduced. This lack of funds prevents the building assets of transportation agencies from being efficiently maintained, so failures may occur that discontinue employees' operations and activities and affect transportation system users. Thus, to maximize the use of available funding, it is compelling to create innovative tools and techniques capable of estimating how potential failures can affect employees' activities and, eventually, transportation system users. Facility managers and decision makers could use such estimates to make decisions on maintenance of building assets that would minimize the risks of disruptions to employees and transportation system users. Among the capital assets of the Washington State Department of Transportation (DOT), transportation equipment fund (TEF) shops are crucial in ensuring timely and effective care and maintenance of the majority of state vehicles and equipment Therefore, any disruption of the operations of TEF shop facilities could significantly affect not only the Washington State DOT's vehicles and equipment maintenance but also the department's ability to fulfill its core mission. Given the importance of TEF shops, this exploratory case study investigates the failures that have occurred or are likely to occur in these facilities and employs discrete-event simulation to quantify the consequences of such failures on the shop activities and road users.

Keywords

Simulation

Domain Knowledge-Based Information Retrieval for Engineering Technical Documents

Shang-hsien Hsieh; Ken-yu Lin; Nai-wen Chi; Hsien-tang Lin. (2015). Domain Knowledge-Based Information Retrieval for Engineering Technical Documents. Ontology In The AEC Industry. A Decade Of Research And Development In Architecture, Engineering And Construction, chapter 1.

View Publication

Abstract

Technical documents with complicated structures are often produced in architecture/engineering/construction (AEC) projects and research. Information retrieval (IR) techniques provide a possible solution for managing the ever-growing volume and contexts of the knowledge embedded in these technical documents. However, applying a general-purpose search engine to a domain-specific technical document collection often produces unsatisfactory results. To address this problem, we research the development of a novel IR system based on passage retrieval techniques. The system employs domain knowledge to assist passage partitioning and supports an interactive concept-based expanded IR for technical documents in an engineering field. The engineering domain selected in this case is earthquake engineering, although the technologies developed and employed by the system should be generally applicable to many other engineering domains that use technical documents with similar characteristics. We carry out the research in a three-step process. In the first step, since the final output of this research is an IR system, as a prerequisite, we created a reference collection which includes 111 earthquake engineering technical documents from Taiwan's National Center for Research on Earthquake Engineering. With this collection, the effectiveness of the IR system can be further evaluated onceit is developed. In the second step, the research focuses on creating a base domain ontology using an earthquake-engineering handbook to represent the domain knowledge and to support the target IR system with the knowledge. In step three, the research focuses on the semantic querying and retrieval mechanisms and develops the OntoPassage approach to help with the mechanisms. The OntoPassage approach partitions a document into smaller passages, each with around 300 terms, according to the main concepts in the document. This approach is then used to implement the target domain knowledge-based IR system that allows users to interact with the system and perform concept-based query expansions. The results show that the proposed domain knowledge-based IR system can achieve not only an effective IR but also inform search engine users with a clear knowledge representation.

Keywords

Architecture; Construction; Engineering; Knowledge Based Systems; Ontologies (artificial Intelligence); Query Processing; Search Engines; Knowledge Representation; Concept-based Query Expansions; Base Domain Ontology; Earthquake Engineering; General-purpose Search Engine; Aec Projects; Architecture/engineering/construction Projects; Complicated Structures; Technical Documents; Domain Knowledge-based Information Retrieval

Mean-Variance Portfolio Analysis Data For Optimizing Community-Based Photovoltaic Investment

Shakouri, Mahmoud; Lee, Hyun Woo. (2016). Mean-Variance Portfolio Analysis Data For Optimizing Community-Based Photovoltaic Investment. Data In Brief, 6, 840 – 842.

View Publication

Abstract

The amount of electricity generated by Photovoltaic (PV) systems is affected by factors such as shading, building orientation and roof slope. To increase electricity generation and reduce volatility in generation of PV systems, a portfolio of PV systems can be made which takes advantages of the potential synergy among neighboring buildings. This paper contains data supporting the research article entitled: PACPIM: new decision-support model of optimized portfolio analysis for community-based photovoltaic investment [1]. We present a set of data relating to physical properties of 24 houses in Oregon, USA, along with simulated hourly electricity data for the installed PV systems. The developed Matlab code to construct optimized portfolios is also provided in Supplementary materials. The application of these files can be generalized to variety of communities interested in investing on PV systems. (C) 2016 The Authors. Published by Elsevier Inc.

Keywords

Community Solar; Photovoltaic System; Portfolio Theory; Energy Optimization; Electricity Volatility

Temporal Effect of Construction Workforce Physical Strain on Diminishing Marginal Productivity at the Task Level

Lee, Wonil; Migliaccio, Giovanni C. (2018). Temporal Effect of Construction Workforce Physical Strain on Diminishing Marginal Productivity at the Task Level. Journal Of Construction Engineering And Management, 144(9).

View Publication

Abstract

Physiological status and environmental stressors are known to influence workforce performance at the individual worker level. A previous study, which conducted a cross-sectional comparison in repetitive material-handling construction activities, suggested that a U-shaped relationship existed between physical strain and productivity at the group level. This research revisits those findings to further investigate the U-curve relationship between physical strain and productivity at the group level and validate the concept of diminishing marginal productivity. Heart rates were measured as an indicator of subjects' physical strain, whereas task productivity was estimated by work sampling. Eighty person-hour data were converted into panel data sets by dividing each subject's 4-h experimental data into 5-min intervals. These data sets were subsequently used to evaluate the effects of time on physical strain and productivity with 5-min lags. The study found a U-curve relationship between physical strain and task-level productivity at the group level while controlling for individual characteristics. The U-shape relationship was constant in the low-performance and high-performance groups, although the degrees of the polynomials differed. Productive workers will remain more productive than low-productive workers with increased physical strain.

Keywords

Construction Industry; Industrial Psychology; Labour Resources; Occupational Health; Polynomials; Productivity; Physiological Status; Environmental Stressors; U-shaped Relationship; Productive Workers; Polynomials Degree; Diminishing Marginal Productivity; Construction Workforce Physical Strain; Labor Productivity; Scientific Management; Shift Work; Performance; Model; Taylorism; Burnout; Design; Impact; Safety; Construction Productivity; Labor And Personal Issue; Work Physiology; Physical Strain

Application of Prevention Through Design (PTD) to Improve the Safety of Solar Installations on Small Buildings

Ho, Chung; Lee, Hyun Woo; Gambatese, John A. (2020). Application of Prevention Through Design (PTD) to Improve the Safety of Solar Installations on Small Buildings. Safety Science, 125.

View Publication

Abstract

As a viable, clean and renewable energy resource, solar energy has gained a significant interest in the US residential sector. Most solar systems are installed on rooftops to take advantage of available space and reduce land use. However, this installation environment also exposes workers to unique safety hazards related to existing roof conditions such as slippery roofing materials, irregular roof layouts, and steep roof slopes. Although Prevention through Design (ND) has been widely considered as an effective way to address safety issues during the design phase, little to no studies have applied ND to improve safety in solar energy installations. To fill this knowledge gap, this research aimed to investigate how, during the design phase, to address the safety concerns of solar workers when installing solar energy systems on residential buildings. Through a series of interviews, four case studies, and a seminar, seven solar ND attributes were identified: roofing materials, roof slopes, roof accessories, panel layouts, fall protection systems, lifting methods and electrical systems. Based on the attributes, a ND protocol was developed that can serve as guidance for implementing ND in solar installations. This paper presents the research activities and findings, and feedback gained from solar contractors through a seminar on the study. The study is expected to contribute to reducing safety hazards by implementing ND, help improve safety performance in solar installations on small residential buildings and support the promotion of safety in sustainable construction.

Keywords

Roofing Materials; Renewable Energy Sources; Sustainable Construction; Solar Energy; Clean Energy; Construction Safety; Prevention Through Design; Small Buildings; Solar Installations; Buildings (structures); Construction Industry; Hazards; Occupational Safety; Roofs; Safety; Solar Power; Sustainable Development; Steep Roof Slopes; Design Phase; Solar Energy Installations; Solar Workers; Installing Solar Energy Systems; Residential Buildings; Seven Solar Ptd Attributes; Roof Accessories; Ptd Protocol; Solar Contractors; Safety Performance; Viable Energy Resource; Clean Energy Resource; Renewable Energy Resource; Us Residential Sector; Solar Systems; Installation Environment; Unique Safety Hazards; Roof Conditions; Slippery Roofing Materials; Irregular Roof Layouts; Issues; Accident Prevention; Protocol; Energy Sources; Residential Areas; Land Use; Prevention; Design; Falls; Occupational Hazards; Contractors; Residential Energy; Protection Systems; Renewable Energy; Buildings; Roofing; Layouts

Accelerated Construction of Urban Intersections with Portland Cement Concrete Pavement (PCCP)

Nemati, Kamran M.; Uhlmeyer, Jeff S. (2021). Accelerated Construction of Urban Intersections with Portland Cement Concrete Pavement (PCCP). Case Studies In Construction Materials, 14.

View Publication

Abstract

The frequent maintenance required on asphalt concrete (AC) pavement sections has made reconstruction with portland cement concrete pavement (PCCP) a feasible alternative. However, many constructability issues need to be addressed in order to realize the full potential of this alternative. Accelerated paving encompasses three classes of activities: methods to accelerate the rate of strength gain, methods to minimize the construction time, and traffic control strategies to minimize user delay. In this paper a case study will be presented in which an AC intersection was reconstructed with portland cement concrete pavement. The entire reconstruction of the intersection, including demolition of the AC pavement and its replacement with PCCP, took place over a period of three days, starting on Thursday evening and opening the intersection to the traffic on Sunday afternoon. This paper documents this effort in order to provide practitioners additional options for rapid reconstruction of urban intersections and includes documentation of the construction process, traffic management strategies, and an analysis of the costs. The results of this investigation can be used to educate pavement construction professionals and the academic community on the use of PCCP for accelerated reconstruction of major urban intersections with minimal user and traffic disruption, using innovative construction techniques and traffic management optimization principles. This investigation produced valuable information to demonstrate that concrete pavements can be constructed efficiently and quickly. (C) 2021 The Authors. Published by Elsevier Ltd.

Keywords

Concrete; Accelerated Construction; Pavement; Portland Cement Concrete Pavement; Maturity Method

Organizational Divisions in BIM-Enabled Commercial Construction

Dossick, Carrie S.; Neff, Gina. (2010). Organizational Divisions in BIM-Enabled Commercial Construction. Journal Of Construction Engineering And Management-asce, 136(4), 459 – 467.

View Publication

Abstract

Proponents claim that the adoption of building information modeling (BIM) will lead to greater efficiencies through increased collaboration. In this paper, we present research that examines the use of BIM technologies for mechanical, electrical, plumbing, and fire life safety systems (often referred to as MEP) coordination and how the introduction of BIM influences collaboration and communication. Using data from over 12 months of ethnographic observations of the MEP coordination process for two commercial construction projects and interviews with 65 industry leaders across the United States, we find that BIM-enabled projects are often tightly coupled technologically, but divided organizationally. This means that while BIM makes visible the connections among project members, it is not fostering closer collaboration across different companies. We outline the competing obligations to scope, project, and company as one cause for this division. Obligations to an individual scope of work or to a particular company can conflict with project goals. Individual leadership, especially that of the MEP coordinator in the teams we studied, often substitutes for stronger project cohesion and organization. Organizational forces and structures must be accounted for in order for BIM to be implemented successfully.

Keywords

Technology; Implementation; Viewpoint; Integrated Systems; Construction Industry; Leadership; Information Systems; Information Technology; Communication; Constructability; Mechanical Systems; Electrical Systems

Quantifying the Impact of Facilitation on Transactive Memory System Formation in Global Virtual Project Networks

Comu, Semra; Iorio, Josh; Taylor, John E.; Dossick, Carrie Sturts. (2013). Quantifying the Impact of Facilitation on Transactive Memory System Formation in Global Virtual Project Networks. Journal Of Construction Engineering & Management, 139(3), 294 – 303.

View Publication

Abstract

Building strong ties between geographically dispersed project participants is crucial to project success. In global project networks, many firms have adopted virtual collaboration tools to address the challenges imposed by temporal and geographical distance. Some researchers have examined the role of facilitators and found that process facilitation can improve collaboration. Research has also shown that facilitators can be drawn into content interactions, which may negatively impact collaboration effectiveness in virtual workspaces. Research to date has not quantified this negative impact. In this study, the formation and maintenance of transactive memory systems (TMS) in two facilitated and two nonfacilitated global virtual project networks were investigated, each executing a 2-month project. Using TMS formation and cohesive subgroup formation as a proxy for performance, quantitative evidence was found that demonstrates a negative impact on collaboration effectiveness when facilitators engage in content facilitation in virtual project networks. This paper shows that this negative impact restricts the establishment of TMSs. These findings have important implications for understanding and designing appropriate facilitator interactions in global virtual project networks. DOI: 10.1061/(ASCE)CO.1943-7862.0000610. (C) 2013 American Society of Civil Engineers.

Keywords

Globalisation; Groupware; International Collaboration; Production Engineering Computing; Project Management; Process Facilitation; Transactive Memory System Formation; Global Virtual Project Network; Virtual Collaboration Tool; Temporal Distance; Geographical Distance; Content Interaction; Virtual Workspace; Tms Cohesive Subgroup Formation; Content Facilitation; Knowledge Transfer; Group Cohesiveness; Group Cohesion; Performance; Teams; Models; Globalization; Networks; Project Networks; Social Network Analysis; Transactive Memory Systems; Virtual Teams

Physiological Condition Monitoring of Construction Workers.

Gatti, Umberto C.; Schneider, Suzanne; Migliaccio, Giovanni C. (2014). Physiological Condition Monitoring of Construction Workers. Automation In Construction, 44, 227 – 233.

View Publication

Abstract

Monitoring of workers' physiological conditions can potentially enhance construction workforce productivity, safety, and well-being. Recently, Physiological Status Monitors (PSMs) were validated as an accurate technology to assess physiological conditions during typical sport science and medicine testing procedures (e.g., treadmill and cycle ergometer protocols). However, sport science and medicine testing procedures cannot simulate routine construction worker movements in a comprehensive manner. Thus, this paper investigated the validity of two PSMs by comparing their measurements with gold standard laboratory instruments' measurements at rest and during dynamic activities resembling construction workforce's routine activities. Two physiological parameters such as heart rate and breathing rate were considered. Ten apparently healthy subjects participated in the study. One of the PSMs proved to be a viable technology in assessing construction workers' heart rate (correlation coefficient >= 0.74; percentage of differences within +/- 11 bpm >= 84.8%). (C) 2014 Elsevier B.V. All rights reserved,

Keywords

Construction Workers; Labor Supply; Labor Productivity; Well-being; Health Status Indicators; Heart Rate Monitoring; Physiology; Construction Management; Construction Worker; Ergonomics; Occupational Health And Safety; Physiological Status Monitoring Technology; Productivity; Work Physiological Demand; Work Physiology; Construction Industry; Monitoring; Occupational Safety; Medicine Testing; Sport Science; Psm; Physiological Status Monitors; Safety; Construction Workforce Productivity; Workers Monitoring; Physiological Condition Monitoring; Heart-rate Monitors; R-r Intervals; Statistical-methods; Respiratory Rate; Physical Load; Polar S810; Strain; Validity; Reliability; Validation

BIM Curriculum Design in Architecture, Engineering, and Construction Education: A Systematic Review

Abdirad, Hamid; Dossick, Carrie S. (2016). BIM Curriculum Design in Architecture, Engineering, and Construction Education: A Systematic Review. Journal Of Information Technology In Construction, 21, 250 – 271.

Abstract

In the past several years, Building Information Modeling (BIM) adoption has grown significantly in the architecture, engineering, and construction (AEC) industry. In response to this trend, the industry and academia realized that BIM education in university curricula is an important requirement for satisfying educational demands of the industry, and a notable body of research has reported strategies AEC programs implemented to incorporate BIM in their curricula. However, no study has comprehensively reviewed and synthesized the research on sfrategies adopted by educators. To bridge this gap in the literature, this paper presents a systematic review of research on BIM curriculum design in AEC education. The authors report on the trends of research on BIM curriculum design (e.g. methods, timelines, and contexts) as well as a synthesis of implemented pedagogical strategies with detailed discussions on their implications and effectiveness across different studies and contexts. These strategies address a variety of important pedagogical issues such as enrolment of students, optional or required BIM use, important competencies and skills, tutoring methods, industry engagement, designing assignments, and assessment methods and criteria. This synthesis shows that designing pedagogical sfrategies for BIM education is complex and challenging, and AEC programs need to make trade-offs between advantages and disadvantages associated with these strategies. The results also highlight the need for more diverse research designs and settings to bridge the gaps identified in BIM curriculum research to date. Finally, the authors present a literature-based framework of BIM curriculum design sfrategies as well as a set of recommendations that can be used BIM educators and researchers as a guide for designing or assessing their BIM curricula in future research.

Keywords

Bridges; Curricula; Economic And Social Effects; Education; Information Theory; Personnel Training; Reviews; Students; Architecture; Engineering; And Constructions; Building Information Model; Bim; Curriculum Designs; Pedagogical Issues; Pedagogical Strategies; Research Designs; Systematic Review; University Curricula; Industry; Management; Building Information Modeling; Training; Curriculum; Review