Skip to content

Identification and Reduction of Synchronous Replacements in Life-Cycle Cost Analysis of Equipment

Kim, Jonghyeob; Han, Sangwon; Hyun, Chang-taek. (2019). Identification and Reduction of Synchronous Replacements in Life-Cycle Cost Analysis of Equipment. Journal Of Management In Engineering, 35(1).

View Publication

Abstract

Life-cycle cost analysis (LCCA) is a methodology used to calculate the total cost of a project from initial planning to final disposal. In conventional approaches, LCCA assumes that regular and preventive maintenance will be performed according to each replacement cycle for individual components, and replacement for each component is considered independently. However, because the components of equipment used in buildings are installed systemically, replacements of major components may cause unexpected replacements of dependent minor components. Therefore, it is necessary to identify additional replacements based on the associations among these related replacement components to achieve a more reliable LCCA. In response, this study proposes an LCCA model that comprehensively considers the relationships among the maintenance components. The development of the model involves identifying relationships among components using social network analysis (SNA), arranging individual replacement timings of the components that reflect these relationships, and analyzing the life-cycle cost (LCC) based on the arranged timing. To validate the model, its applicability and effectiveness was illustrated and tested using 19 components of a rainwater reuse system. This study makes a theoretical contribution to the body of knowledge by suggesting concepts of synchronous relationships and replacements based on SNA. In addition, the use of the model proposed in this study enables practitioners to analyze LCCs that reflect synchronous replacements, which allows more reasonable decision-making considering hidden costs in conventional LCC. (C) 2018 American Society of Civil Engineers.

Keywords

Decision Making; Life Cycle Costing; Preventive Maintenance; Synchronous Replacements; Life-cycle Cost Analysis; Lcca Model; Maintenance Components; Social Network Analysis; Painted Surfaces; Decision-making; Prediction; Model; Risk; Maintenance; Replacement; Synchronous Replacement; Synchronous Relationship; Life-cycle Cost Analysis (lcca); Social Network Analysis (sna)

Impact of Energy Benchmarking and Disclosure Policy on Office Buildings

Shang, Luming; Lee, Hyun Woo; Dermisi, Sofia; Choe, Youngjun. (2020). Impact of Energy Benchmarking and Disclosure Policy on Office Buildings. Journal Of Cleaner Production, 250.

View Publication

Abstract

Building energy benchmarking policies require owners to publicly disclose their building's energy performance. In the US, the adoption of such policies is contributing to an increased awareness among tenants and buyers and is expected to motivate the owners of less efficient buildings to invest in energy efficiency improvements. However, there is a lack of studies specifically aimed at investigating the impact of such policies on office buildings among major cities through quantitative analyses. In response, this study evaluated the effectiveness of the benchmarking policy on energy efficiency improvements decision-making and on real estate performances, by applying two interrupted time series analyses to office buildings in downtown Chicago. The initial results indicate a lack of statistically strong evidence that the policy affected the annual vacancy trend of the energy efficient buildings (represented by ENERGY STAR labeled buildings). However, the use of interrupted time series in a more in-depth analysis shows that the policy is associated with a 6.7% decrease in vacancy among energy efficient buildings. The study proposed a method to quantitatively evaluate the impact of energy policies on the real estate performance of office buildings, and the result confirms the positive impact of energy-efficient retrofits on the real estate performance. The study findings support the reasoning behind the owners' decision in implementing energy efficiency improvements in their office buildings to remain competitive in the market. (C) 2019 Elsevier Ltd. All rights reserved.

Keywords

Office Buildings; Building Failures; Time Series Analysis; Real Property; Energy Consumption; Metropolis; Building Performance; Chicago (ill.); Building Energy Benchmarking And Disclosure Policies; Building Energy Efficiency; Time Series Modeling; Energy Star (program); Building Management Systems; Buildings (structures); Decision Making; Energy Conservation; Maintenance Engineering; Time Series; Disclosure Policy; Energy Benchmarking Policies; Building; Benchmarking Policy; Energy Efficiency Improvements Decision-making; Estate Performance; Energy Efficient Buildings; Energy Star; Energy Policies; Energy-efficient Retrofits; Interrupted Time-series; Regression; Behavior; Designs; Building Energy Benchmarking And; Disclosure Policies; Buildings; Cities; Energy Efficiency; Energy Policy; Markets; Quantitative Analysis; United States

Reinforcement Learning Approach To Scheduling Of Precast Concrete Production

Kim, Taehoon; Kim, Yong-woo; Lee, Dongmin; Kim, Minju. (2022). Reinforcement Learning Approach To Scheduling Of Precast Concrete Production. Journal Of Cleaner Production, 336.

View Publication

Abstract

The production scheduling of precast concrete (PC) is essential for successfully completing PC construction projects. The dispatching rules, widely used in practice, have the limitation that the best rule differs according to the shop conditions. In addition, mathematical programming and the metaheuristic approach, which would improve performance, entail more computational time with increasing problem size, let alone its models being revised as the problem size changes. This study proposes a PC production scheduling model based on a reinforcement learning approach, which has the advantages of a general capacity to solve various problem conditions with fast computation time and good performance in real-time. The experimental study shows that the proposed model outperformed other methods by 4-12% of the total tardiness and showed an average winning rate of 77.0%. The proposed model could contribute to the successful completion of off-site construction projects by supporting the stable progress of PC construction.

Keywords

Precast Concrete; Reinforcement Learning; Deep Q -network; Production Scheduling; Minimize; Model

A Case Study of Activity-Based Costing in Allocating Rebar Fabrication Costs to Projects

Kim, Yong-Woo; Han, Seungheon; Shin, Sungwon; Choi, Kunhee. (2011). A Case Study of Activity-Based Costing in Allocating Rebar Fabrication Costs to Projects. Construction Management And Economics, 29(5), 449 – 461.

View Publication

Abstract

How to improve cost allocation for reinforced steel bar (rebar) is an ongoing topic of debate among construction manufacturers and contractors. Traditionally, many fabrication shops have used a single overhead-cost pool accounting system. However, a new costing method, activity-based costing (ABC), may provide more advantages than the traditional system. In this case study, a single overhead-cost pool system is compared with the ABC method to demonstrate how ABC improves cost allocation and provides other benefits. The case study findings indicate that ABC provides such benefits as (1) accurate manufacturing costs; (2) cost information on processes; and (3) information on cost drivers. This paper also bridges the construction and cost accounting literature. Our study contributes to the construction management literature by offering a different cost allocation method to refine fabrication costs assigned to projects. The findings are expected to serve as a reference for industry professionals who recognize the shortcomings of a traditional single overheadcost pool system and are in need of a more accurate costing system. © 2011 Taylor & Francis.

Keywords

Bridges; Costs; Fabrication; Lakes; Project Management; Rebar; Accounting System; Activity Based Costing; Construction Management; Fabrication Shops; Industry Professionals; Manufacturing Cost; Overhead Costs; Traditional Systems

Using Ontology-based Text Classification To Assist Job Hazard Analysis

Chi, Nai-wen; Lin, Ken-yu; Hsieh, Shang-hsien. (2014). Using Ontology-based Text Classification To Assist Job Hazard Analysis. Advanced Engineering Informatics, 28(4), 381 – 394.

View Publication

Abstract

The dangers of the construction industry due to the risk of fatal hazards, such as falling from extreme heights, being struck by heavy equipment or materials, and the possibility of electrocution, are well known. The concept of Job Hazard Analysis is commonly used to mitigate and control these occupational hazards. This technique analyzes the major tasks in a construction activity, identifies all potential task-related hazards, and suggests safe approaches to reduce or avoid each of these hazards. In this paper, the authors explore the possibility of leveraging existing construction safety resources to assist JHA, aiming to reduce the level of human effort required. Specifically, the authors apply ontology-based text classification (TC) to match safe approaches identified in existing resources with unsafe scenarios. These safe approaches can serve as initial references and enrich the solution space when performing JHA. Various document modification strategies are applied to existing resources in order to achieve superior TC effectiveness. The end result of this research is a construction safety domain ontology and its underlying knowledge base. A user scenario is also discussed to demonstrate how the ontology supports JHA in practice. (C) 2014 Elsevier Ltd. All rights reserved.

Keywords

Construction Industry; Health Hazards; Human Factors; Occupational Safety; Ontologies (artificial Intelligence); Pattern Classification; Text Analysis; Ontology-based Text Classification; Job Hazard Analysis; Fatal Hazards; Task-related Hazard; Construction Safety Resource; Jha; Construction Safety Domain Ontology; Construction; Information; Construction Safety; Information Retrieval; Knowledge Management; Ontology; Text Classification

Actors and Barriers to the Adoption of LCC And LCA Techniques in the Built Environment

D’Incognito, Maria; Costantino, Nicola; Migliaccio, Giovanni C. (2015). Actors and Barriers to the Adoption of LCC And LCA Techniques in the Built Environment. Built Environment Project And Asset Management, 5(2), 202 – 216.

View Publication

Abstract

Purpose - The purpose of this paper is to evaluate the existing barriers to the slow adoption of Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) in construction, and the main responsible actors. Design/methodology/approach - The research design is based on a two-phase approach. First, the existing literature was studied through a multiple-step content analysis (CA) approach, which combined unsupervised concept mapping with computer aided CA. Using a relational CA approach, statistical-based analysis tools were initially used to identify the relationships between actors and barriers. Later, a Delphi study was administered to a panel of experts, to triangulate, validate, and refine the initial results. Findings - The study revealed that organizational culture is the most relevant barrier, and that clients and professionals are the actors that predominantly influence the adoption of LCC and LCA in projects. Technical and financial barriers, such as the lack and quality of input data and the high costs of implementation are also deemed relevant. Research limitations/implications - The CA was performed by a single rater on a sample that included 50 papers in English language. Future research may focus on enlarging the sample, extending it to other languages, and linking the source (or the expert) to their professional context to evaluate geographical differences in barriers. Originality/value - The adopted approach gives new insights on the relationships behind the rejection of LCA and LCC suggesting that solutions at the organizational level may be more effective than technical ones.

Keywords

Construction; Innovation; Content Analysis; Sustainability; Organizational Culture; Lca; Lcc; Life Cycle Management; Innovations; Life Cycle Costs; Experts; Software; Corporate Culture; Concept Mapping; Urban Environments; Computer Aided Mapping; Life Cycles; Life Cycle Engineering; Decision Making; Organizational Aspects; Supply Chains; Research Design; Professionals; Construction Industry; Construction Costs; Life Cycle Analysis; Urban Areas; English Language; Barriers; Regulation Of Financial Institutions; Life Cycle Assessment

Efficiency Index for Fiber-Reinforced Concrete Lining at Ultimate Limit State

Fantilli, Alessandro P.; Nemati, Kamran M.; Chiaia, Bernardino. (2016). Efficiency Index for Fiber-Reinforced Concrete Lining at Ultimate Limit State. Sustainable And Resilient Infrastructure, 1(1-2), 84 – 91.

View Publication

Abstract

The fiber contribution to the ultimate limit state capacity of precast and cast-in situ tunnel linings is analytically investigated. By means of a numerical model, capable of computing the interaction curves of reinforced concrete cross sections subjected to combined compressive and bending actions, the mechanical performances of plain and fiber-reinforced concrete are compared. As a result, a new index is introduced to quantify the effectiveness of fiber addition. The higher the efficiency index, the higher the amount of steel reinforcing bar that can be removed from a plain concrete cross section. The application to real concrete linings, where shear resistance is ensured without shear reinforcement, shows that a large volume of rebar can be saved by the presence of steel fibers. This gives significant advantages in terms of durability and rapidity of tunnel construction.

Keywords

Fiber-reinforced Concrete; Efficiency Index; Ultimate Limit State; Cast-in Situ Concrete Lining; Precast Tunnel Segments

Activity-Based Life Cycle Analysis of a Curtain Wall Supply for Reducing Its Environmental Impact

Yi, June-seong; Kim, Yong-woo; Lim, Ji Youn; Lee, Jeehee. (2017). Activity-Based Life Cycle Analysis of a Curtain Wall Supply for Reducing Its Environmental Impact. Energy And Buildings, 138, 69 – 79.

View Publication

Abstract

Life-Cycle Assessment has been used extensively in the construction industry to assess the environmental impacts of building materials. Attributional LCA considers processes in a supply chain which allows users to identify a process to improve to minimize the environmental impacts. However, the level of detail adopted in traditional attributional LCA is aggregate, not appropriate for process improvement efforts in the construction project context which is characterized as a complex system. This paper proposes Activity-based LCA (ABLCA) which adopts the methodology of the activity-based costing system to carry out the assessment and analysis of environmental impacts for the life cycle. The research carried out a case study on the curtain wall supply chain. The outcome of inventory analysis for each activity and environmental impact assessment showed the curtain wall supply chain process made an impact on five environmental impact categories: global warming air, acidification air, HH criteria air; eutrophication air, and photochemical smog air. With comparison to the outcome of environmental impact assessment from existing LCA, the proposed management system to investigate environmental impacts was addressed. The proposed ABLCA enables management to develop an environmental-impacts-reduction plan focusing on critical activities. (C) 2016 Elsevier B.V. All rights reserved.

Keywords

Construction Industry & The Environment; Energy Conservation In Construction Industry; Building Materials & The Environment; Complexity (philosophy); Global Warming & The Environment; Activity-based Management; Attributional Lca (life-cycle Assessment); Curtain Wall; Environmental Impacts; Activity-based Life Cycle Analysis; Ablca; Construction Industry; Building Materials; Inventory Analysis; Life-cycle Assessment; Environmental Impact Categories; Curtain Wall Supply Chain Process; Environmental Impact Assessment; Environmental-impacts-reduction Plan; Environmental Factors; Inventory Management; Life Cycle Costing; Product Life Cycle Management; Supply Chain Management; Walls; United-states; Performance; Buildings; Energy; Trends; Lca; Environmental Impact; Supply Chains; Environmental Assessment; Construction Materials; Life Cycle Engineering; Eutrophication; Life Cycle Analysis; Construction; Climate Change; Global Warming; Smog; Life Cycle Assessment; Case Studies; Cost Analysis; Acidification; Photochemical Smog; Environmental Management; Life Cycles

Bare Facts and Benefits of Resource-Loaded CPM Schedules

Ottesen, Jeffery L.; Martin, Greta A. (2019). Bare Facts and Benefits of Resource-Loaded CPM Schedules. Journal Of Legal Affairs And Dispute Resolution In Engineering And Construction, 11(3).

View Publication

Abstract

Forum papers are thought-provoking opinion pieces or essays founded in fact, sometimes containing speculation, on a civil engineering topic of general interest and relevance to the readership of the journal. The views expressed in this Forum article do not necessarily reflect the views of ASCE or the Editorial Board of the journal.

Demystifying Progressive Design Build: Implementation Issues and Lessons Learned through Case Study Analysis

Shang, Luming; Migliaccio, Giovanni C. (2020). Demystifying Progressive Design Build: Implementation Issues and Lessons Learned through Case Study Analysis. Organization Technology And Management In Construction, 12(1), 2095 – 2108.

View Publication

Abstract

The design-build (DB) project delivery method has been used for several decades in the US construction market. DB contracts are usually awarded on the basis of a multicriteria evaluation, with price as one of the most salient criteria. To ensure the project's success, an owner usually has to invest enough time and effort during scoping and early design to define a program, scope, and budget, ready for procurement and price generation. However, this process can become a burden for the owner and may lengthen the project development duration. As an alternative to the traditional DB, the progressive design-build (PDB) approach permits the selection of the DB team prior to defining the project program and/or budget. PDB has the advantage of maintaining a single point of accountability and allowing team selection based mainly on qualifications, with a limited consideration of price. Under PDB, the selected team works with the project stakeholders during the early design stage, while helping the owner balance scope and budget. However, the key to the effectiveness of PDB is its provision for the ongoing and complete involvement of the owner in the early design phase. Due to the differences between PDB and the other project delivery methods (e.g., traditional DB), project teams must carefully consider several factors to ensure its successful implementation. The research team conducted a case study of the University of Washington's pilot PDB project to complete the West Campus Utility Plant (WCUP). This paper carefully explores and summarizes the project's entire delivery process (e.g., planning, solicitation, design, and construction), its organizational structures, and the project performance outcomes. The lessons learned from the WCUP project will contribute to best practices for future PDB implementation.

Keywords

Progressive Design Build; Project Delivery Method