Skip to content

Efficient Optimization of Post-Disaster Reconstruction of Transportation Networks

El-Anwar, Omar; Ye, Jin; Orabi, Wallied. (2016). Efficient Optimization of Post-Disaster Reconstruction of Transportation Networks. Journal Of Computing In Civil Engineering, 30(3).

View Publication

Abstract

Catastrophes, such as hurricanes, earthquakes, and tsunamis often cause large-scale damage to transportation systems. In the aftermath of these disasters, there is a present challenge to quickly analyze various reconstruction plans and assess their impacts on restoring transportation services. This paper presents a new methodology for optimizing post-disaster reconstruction plans for transportation networks with superior computational efficiency employing mixed-integer linear programming (MILP). The model is capable of optimizing transportation recovery projects prioritization and contractors assignment in order to simultaneously: (1)accelerate networks recovery; and (2)minimize public expenditures. The full methodology is presented in two companion publications, where the focus of this paper is to propose new methods for (1)decomposing traffic analysis; (2)assessing the traffic and cost performance of reconstruction plans; (3)reducing the massive solution search space; and (4)phasing the use of mixed-integer linear programming to optimize the problem. An illustrative example is presented throughout the paper to demonstrate the implementation phases. (C) 2015 American Society of Civil Engineers.

Keywords

Cost Reduction; Disasters; Emergency Management; Integer Programming; Linear Programming; Project Management; Public Finance; Search Problems; Town And Country Planning; Transportation; Solution Search Space Reduction; Cost Performance Assessment; Traffic Performance Assessment; Traffic Analysis; Public Expenditure Minimization; Network Recovery Acceleration; Contractor Assignment; Transportation Recovery Project Prioritization; Milp; Mixed-integer Linear Programming; Post-disaster Reconstruction Plan Optimization; Transportation Service Restoration; Reconstruction Plans; Transportation System Large-scale Damage; Tsunami; Earthquake; Hurricane; Catastrophe; Transportation Network; Post-disaster Reconstruction Optimization; Optimizing Resource Utilization; Natural Disasters; Housing Projects; Construction; Performance; Robustness; Recovery; Plans; Transportation Network Reconstruction; Post-disaster Recovery; Multi-objective Optimization; Computational Cost; Contractors Assignment; Search Space

Exploring the Influence of System Quality, Information Quality, and External Service on BIM User Satisfaction

Song, Jiule; Migliaccio, Giovanni C.; Wang, Guangbin; Lu, Hao. (2017). Exploring the Influence of System Quality, Information Quality, and External Service on BIM User Satisfaction. Journal Of Management In Engineering, 33(6).

View Publication

Abstract

Over the past decade, architecture, engineering and construction (AEC) companies around the world implemented building information modeling (BIM) to enhance their firms' competitiveness and readjust their business processes. Although substantial efforts have been made to implement BIM, previous research highlighted that implementation of BIM tools has not always resulted in satisfaction by users. Grounded in the literature on information systems and enterprise resource planning user satisfaction, this study tries to evaluate the success of BIM in terms of user satisfaction while controlling for the mediating effect of top-management support. The effects of four factors (i.e., system quality, information quality, external service, and top-management support) on BIM user satisfaction in AEC industries were examined through a survey of BIM users from China. Survey responses were analyzed with the partial least-squares method. The major contribution of this work lies in the findings that information quality, external service, and top-management support have a significant influence on BIM user satisfaction, and system quality did not have a significant influence on BIM user satisfaction. Moreover, top-management support acts as a mediating factor between external service and BIM user satisfaction. (C) 2017 American Society of Civil Engineers.

Keywords

Computing Satisfaction; Perceived Usefulness; Erp Systems; Success; Model; Performance; Technology; Acceptance; Tool; Determinants; Bim User Satisfaction; System Quality; Information Quality; External Services; Top-management Support

Restructuration of Architectural Practice in Integrated Project Delivery (IPD): Two Case Studies

Abdirad, Hamid; Dossick, Carrie S. (2019). Restructuration of Architectural Practice in Integrated Project Delivery (IPD): Two Case Studies. Engineering, Construction And Architectural Management, 26(1), 104 – 117.

View Publication

Abstract

Purpose The purpose of this paper is to clarify that while integrated project delivery (IPD) methods can be momenta for restructuring architectural practice, they do not predetermine specific patterns of restructuration for the roles, responsibilities and services of architects. Design/methodology/approach This paper is based on a multiple case study design; two IPD projects were theoretically sampled and studied. The data collection methods included semi-structured interviews and observations. An inductive data analysis approach was applied to frame the phenomena, conduct cross-case comparisons and develop propositions. Findings While IPD implementations set expectations for new structures for practices, it is the project participants' situated decisions that lead to the restructuration of some dimensions of architectural practice. The dimensions in this study included team formation, design leadership and collaboration and architectural services. IPD project participants locally changed and redefined conventional roles, responsibilities and project artifacts (e.g. drawings and models) that concerned design development and coordination. Practical implications - IPD context, by itself, does not predetermine a fixed pattern of change in establishing designers' roles, responsibilities and services because restructuration is highly negotiated amongst the IPD parties and can lead to different responses to this contractual setting. Contracts set expectations for collaborative behavior, but the fulfillment of these expectations is situated and emerging as project participants negotiate to develop practices. Originality/value - While IPD research and guidelines aim to provide recipes for IPD implementation, this study contributes to the body of knowledge by clarifying that IPD is a context in which unprecedented ways of practice restructuration could emerge.

Keywords

Construction Industry; Contracts; Data Analysis; Human Resource Management; Innovation Management; Organisational Aspects; Project Management; Team Working; Architectural Practice; Case Studies; Integrated Project Delivery Methods; Specific Patterns; Responsibilities; Design/methodology; Multiple Case Study Design; Ipd Projects; Data Collection Methods; Observations; Inductive Data Analysis Approach; Cross-case Comparisons; Ipd Implementation; Practices; Design Leadership; Architectural Services; Ipd Project Participants; Conventional Roles; Project Artifacts; Concerned Design Development; Coordination; Practical Implications; Ipd Context; Designers; Ipd Parties; Different Responses; Practice Restructuration; Contractors; Ipd; Architecture; Integration; Design Management; Case Study; Integrated Project Delivery; Integrated Practice; Restructuration

Stackelberg Game Theory-Based Optimization Model for Design of Payment Mechanism in Performance-Based PPPs

Shang, Luming; Aziz, Ahmed M. Abdel. (2020). Stackelberg Game Theory-Based Optimization Model for Design of Payment Mechanism in Performance-Based PPPs. Journal Of Construction Engineering And Management, 146(4).

View Publication

Abstract

Payment mechanisms lie at the heart of public-private partnership (PPP) contracts. A good design of the payment mechanism should consider the owner's goals in the project, allocate risks appropriately to stakeholders, and assure satisfactory performance by providing reasonable compensation to the private developer. This paper proposes a Stackelberg game theory-based model to assist public agencies in designing payment mechanisms for PPP transportation projects. The interests of both public and private sectors are considered and reflected by a bilevel objective function. The model aims to search for solutions that maximize a project's overall performance for the sake of social welfare while simultaneously maximizing return for the sake of private investment. A variable elimination method and genetic algorithm are used to solve the optimization model. A case study based on a real PPP project is discussed to validate the effectiveness of the proposed model. The solutions provided by the model reveal that the optimal payment mechanism structure could be established such that it would satisfy owners' requirements for overall project performance while optimizing project total payments to contractors.

Keywords

Construction Industry; Contracts; Financial Management; Game Theory; Genetic Algorithms; Investment; Optimisation; Organisational Aspects; Project Management; Public Administration; Transportation; Public-private Partnership Contracts; Good Design; Private Developer; Stackelberg Game Theory-based Model; Ppp Transportation Projects; Public Sectors; Private Sectors; Private Investment; Ppp Project; Optimal Payment Mechanism Structure; Project Performance; Project Total Payments; Stackelberg Game Theory-based Optimization Model; Performance-based Ppps; Public-private Partnerships; Analytic Hierarchy Process; Weighted Sum Method; Multiobjective Optimization; Algorithm; Incentives; Projects; Network; Success; Branch

Prefabrication Supply Chains With Multiple Shops: Optimization For Job Allocation.

Ho, Chung; Kim, Yong-woo; Zabinsky, Zelda B. (2022). Prefabrication Supply Chains With Multiple Shops: Optimization For Job Allocation. Automation In Construction, 136.

View Publication

Abstract

Prefabrication or off-site construction is a growing trend contributing to productivity improvements. It motivates specialty contractors and suppliers to operate multiple fabrication shops close to market regions, where a shop can produce and delivery prefabricated components in a timely fashion and at a minimal cost. Few quantitative models are available to assist companies with scheduling and allocation questions. This research utilizes optimization to answer these questions supporting the production planning in prefabrication supply chains. The paper presents an optimization model that seeks minimal cost while considering job demands and shop capacities. Computational results suggest that the model generates a lower-cost production schedule than the early due date (EDD) method. It also indicates that varying due dates cause changes in total cost. Moreover, this research supports decision-makers by analyzing the impacts of changing shop capacities regarding available machines. It provides further insight into construction supply chain management with multiple shops.

Keywords

Supply Chains; Job Shops; Supply Chain Management; Production Scheduling; Production Planning; Warehouses; Construction; Modularization; Optimization; Prefabrication; Scheduling; Off-site Construction; Modular Buildings; Scheduling Model; Precast; Management; Transportation; Performance; Decisions

Enabling The Development Of Base Domain Ontology Through Extraction Of Knowledge From Engineering Domain Handbooks

Hsieh, Shang-hsien; Lin, Hsien-tang; Chi, Nai-wen; Chou, Kuang-wu; Lin, Ken-yu. (2011). Enabling The Development Of Base Domain Ontology Through Extraction Of Knowledge From Engineering Domain Handbooks. Advanced Engineering Informatics, 25(2), 288 – 296.

View Publication

Abstract

Domain ontology, encompassing both concepts and instances, along with their relations and properties, is a new medium for the storage and propagation of domain specific knowledge. A significant problem remains the effort which must be expended during ontology construction. This involves collecting the domain-related vocabularies, developing the domain concept hierarchy, and defining the properties of each concept and the relationships between concepts. Recently several engineering handbooks have described detailed domain knowledge by organizing the knowledge into categories, sections, and chapters with indices in the appendix. This paper proposes the extraction of concepts, instances, and relationships from a handbook of a specific domain to quickly construct base domain ontology as a good starting point for expediting the development process of more comprehensive domain ontology. The extracted information can also be reorganized and converted into web ontology language format to represent the base domain ontology. The generation of a base domain ontology from an Earthquake Engineering Handbook is used to illustrate the proposed approach. In addition, quality evaluation of the extracted base ontology is performed and discussed. (C) 2010 Elsevier Ltd. All rights reserved.

Keywords

Ontology; Earthquake Engineering; World Wide Web; Theory Of Knowledge; Vocabulary; Programming Languages; Domain Handbook; Domain Ontology; Owl; Web Ontology Language; Knowledge Representation Languages; Ontologies (artificial Intelligence); Base Domain Ontology; Knowledge Extraction; Engineering Domain Handbooks; Domain Specific Knowledge Storage; Domain Specific Knowledge Propagation; Domain-related Vocabularies; Domain Concept Hierarchy; Development Process; Web Ontology Language Format; Earthquake Engineering Handbook; Semantic Web; Management; Design

Where to Focus for Successful Adoption of Building Information Modeling within Organization

Won, Jongsung; Lee, Ghang; Dossick, Carrie; Messner, John. (2013). Where to Focus for Successful Adoption of Building Information Modeling within Organization. Journal Of Construction Engineering And Management, 139(11).

View Publication

Abstract

Suggestions abound for successful adoption of building information modeling (BIM); however, a company with limited resources cannot adopt them all. The factors that have top management priority for successful accomplishment of a task are termed critical success factors (CSFs). This paper aims to derive the CSFs for four questions commonly asked by companies in the first wave of BIM adoption: (1)What are the CSFs for adopting BIM in a company? (2)What are the CSFs for selecting projects to deploy BIM? (3)What are the CSFs for selecting BIM services? (4)What are the CSFs for selecting company-appropriate BIM software applications? A list of consideration factors was collected for each question, based on a literature review, and then refined through face-to-face interviews based on experiences of BIM experts. An international survey was conducted with leading BIM experts. From the 206 distributed surveys, 52 responses from four continents were collected. This study used quantitative data analysis to derive a manageable number (4-10) of CSFs for each category from dozens of anecdotal consideration factors. The derived CSFs are expected to be used as efficient metrics for evaluating and managing the level of BIM adoption and as a basis for developing BIM evaluation models in the future.

Keywords

Architectural Cad; Building Information Modeling; Bim; Critical Success Factors; Csf; Management; Building Information Models; Organizations; Computer Software; Building Information Modeling (bim); Critical Success Factor (csf); Organizational Strategy; Bim Software Application; Bim Service; Bim-assisted Project; Information Technologies

Empirical Assessment of Geographically Based Surface Interpolation Methods for Adjusting Construction Cost Estimates by Project Location

Zhang, Su; Migliaccio, Giovanni C.; Zandbergen, Paul A.; Guindani, Michele. (2014). Empirical Assessment of Geographically Based Surface Interpolation Methods for Adjusting Construction Cost Estimates by Project Location. Journal Of Construction Engineering And Management, 140(6).

View Publication

Keywords

Construction; Interpolation; Project Management; Geographically Based Surface Interpolation Methods; Construction Cost Estimates; Project Location; Construction Projects; Proximity-based Interpolation; Location Factor; Proximity-based Method; Global Spatial Autocorrelation; Cost Index Databases; Cost Estimators; Spatial Interpolation Techniques; Conditional Nearest Neighbor; Cnn; Inverse Distance Weighted; Idw Methods; Spatial Prediction Models; Distance Weighted Interpolation; Spatial Interpolation; Kriging Method; Precipitation; Temperature

Innovative Linear Formulation for Transportation Reconstruction Planning

El-Anwar, Omar; Ye, Jin; Orabi, Wallied. (2016). Innovative Linear Formulation for Transportation Reconstruction Planning. Journal Of Computing In Civil Engineering, 30(3).

View Publication

Abstract

Following disasters, the pace of restoring transportation networks can have a significant impact on economic and societal recovery. However, reconstruction and repair efforts are typically faced by budget constraints that require careful selection among competing contractors. This paper presents an innovative formulation to optimize this complex planning problem in order to maximize the rate of transportation network recovery while minimizing the associated reconstruction costs. This study first contributes to the body of knowledge by offering an effective and efficient means of identifying the optimal schedules for reconstruction projects and the optimal contractor assignments. This is achieved by solving the problem using a new mixed-integer linear programming model. However, there are four main formulation challenges to represent this problem using linear equations because of the need to use logical operators. As such, the second contribution of this study is in offering innovative solutions to overcome these formulation challenges, which are generalizable to other construction scheduling and planning problems. This paper is companion to another paper that describes a holistic optimization and traffic assessment methodology for post-disaster reconstruction planning for damaged transportation networks. (C) 2015 American Society of Civil Engineers.

Keywords

Integer Programming; Linear Programming; Transportation; Innovative Linear Formulation; Transportation Reconstruction Planning; Economic Recovery; Societal Recovery; Complex Planning Problem; Transportation Network Recovery; Mixed-integer Linear Programming Model; Traffic Assessment Methodology; Postdisaster Reconstruction Planning; Natural Disasters; Housing Projects; Construction; Optimization; Performance; Robustness; Earthquake; Efficiency; Recovery; Plans; Transportation Network Reconstruction; Post-disaster Recovery; Multi-objective Optimization; Mixed-integer Linear Programming; Contractors Assignment; Linear Formulation; Reconstruction Costs

The Relation of Perceived Benefits and Organizational Supports to User Satisfaction with Building Information Model (BIM)

Wang, Guangbin; Song, Jiule. (2017). The Relation of Perceived Benefits and Organizational Supports to User Satisfaction with Building Information Model (BIM). Computers In Human Behavior, 68, 493 – 500.

View Publication

Abstract

In recent years, building information model (BIM) is becoming increasing popularity in architecture, engineering and construction (AEC) industry, many researchers and practitioners have verified the benefits of BIM as compared to traditional information technology, for example Autodesk CAD. As one of the key drivers of BIM adopt, BIM users are significantly impact on the success level of BIM implementation. As a factor leading to information system success and indicating the continuance intention after their initial adoption, BIM user satisfaction is studied in this work. Based on the data collected from 118 BIM engineers, this study examined the influence of five potential variables (such as attitude, perceived ease of use, perceived usefulness, top management support and management by objective) on BIM user satisfaction in AEC industry. The result from PLS (partial least square) showed that the perceived usefulness, top management support and management by objective are significantly associated with BIM user satisfaction, and the influence of management by objective on BIM user satisfaction is much stronger than top management support and perceived usefulness. Besides, perceived ease of use and attitude have a significant influence on perceived usefulness. Moreover, top management support is found to be positive associated with management by objective. Finally, the discussion of these results was presented. (C) 2016 Elsevier Ltd. All rights reserved.

Keywords

Personal-computer Utilization; Technology; Acceptance; Management; Success; Systems; Pls; Attributes; Objectives; Variables; Bim User Satisfaction; Perceived Ease Of Use; Perceived Usefulness; Top Management Support; Management By Objective