Skip to content

A Global Horizon Scan for Urban Evolutionary Ecology

Verrelli, Brian C.; Alberti, Marina; Des Roches, Simone; Harris, Nyeema C.; Hendry, Andrew P.; Johnson, Marc T. J.; Savage, Amy M.; Charmantier, Anne; Gotanda, Kiyoko M.; Govaert, Lynn; Miles, Lindsay S.; Rivkin, L. Ruth; Winchell, Kristin M.; Brans, Kristien I.; Correa, Cristian; Diamond, Sarah E.; Fitzhugh, Ben; Grimm, Nancy B.; Hughes, Sara; Marzluff, John M.; Munshi-south, Jason; Rojas, Carolina; Santangelo, James S.; Schell, Christopher J.; Schweitzer, Jennifer A.; Szulkin, Marta; Urban, Mark C.; Zhou, Yuyu; Ziter, Carly. (2022). A Global Horizon Scan for Urban Evolutionary Ecology. Trends In Ecology & Evolution, 37(11), 1006-1019.

View Publication

Abstract

Research on the evolutionary ecology of urban areas reveals how human-induced evolutionary changes affect biodiversity and essential ecosystem services. In a rapidly urbanizing world imposing many selective pressures, a time-sensitive goal is to identify the emergent issues and research priorities that affect the ecology and evolution of species within cities. Here, we report the results of a horizon scan of research questions in urban evolutionary ecology submitted by 100 interdisciplinary scholars. We identified 30 top questions organized into six themes that highlight priorities for future research. These research questions will require methodological advances and interdisciplinary collaborations, with continued revision as the field of urban evolutionary ecology expands with the rapid growth of cities.

Keywords

Urban Ecology; Sustainability; Cities & Towns; Ecosystem Dynamics; Urban Growth; Ecosystem Services; Urban Research; Climate Change; Sociopolitical; Urban Evolution; Urbanization; Human Health; Biodiversity; Adaptation; Challenges; Dynamics; Management; Invasion; Science

A Water Quality Prediction Model for Large-scale Rivers Based on Projection Pursuit Regression in the Yangtze River

Yi, Ze-ji; Yang, Xiao-hua; Li, Yu-qi. (2022). A Water Quality Prediction Model for Large-scale Rivers Based on Projection Pursuit Regression in the Yangtze River. Thermal Science, 26(3), 2561-2567.

View Publication

Abstract

In recent decades, the Yangtze River Basin, which carries hundreds of millions of people and a substantial economic scale, has been plagued by water quality dete-rioration, threatening considerably sustainable development. In this paper, a sample set is established based on the water quality indexes of chemical oxygen demand and dissolved oxygen obtained by week-by-week monitoring on the main stream of the Yangtze River in Panzhihua, Yueyang, Jiujiang, and Nanjing from 2006 to 2018. The twelve characteristic variables are selected by random forest technique, and the week-by-week dynamic prediction models of chemical oxygen demand and dissolved oxygen at each section of main stream are established by the projection pursuit regression, which can effectively predict the water quality dynamics of the Yangtze River main stream.

Keywords

Pollution; Water Quality; Dynamic Prediction Model; Random Forest; Projection Pursuit Regression; Yangtze River

Associations between Neighborhood Built Environment, Residential Property Values, and Adult BMI Change: The Seattle Obesity Study III

Buszkiewicz, James H.; Rose, Chelsea M.; Ko, Linda K.; Mou, Jin; Moudon, Anne Vernez; Hurvitz, Philip M.; Cook, Andrea J.; Drewnowski, Adam. (2022). Associations between Neighborhood Built Environment, Residential Property Values, and Adult BMI Change: The Seattle Obesity Study III. SSM-Population Health, 19.

View Publication

Abstract

Objective: To examine associations between neighborhood built environment (BE) variables, residential property values, and longitudinal 1-and 2-year changes in body mass index (BMI). Methods: The Seattle Obesity Study III was a prospective cohort study of adults with geocoded residential addresses, conducted in King, Pierce, and Yakima Counties in Washington State. Measured heights and weights were obtained at baseline (n = 879), year 1 (n = 727), and year 2 (n = 679). Tax parcel residential property values served as proxies for individual socioeconomic status. Residential unit and road intersection density were captured using Euclidean-based SmartMaps at 800 m buffers. Counts of supermarket (0 versus. 1+) and fast-food restaurant availability (0, 1-3, 4+) were measured using network based SmartMaps at 1600 m buffers. Density measures and residential property values were categorized into tertiles. Linear mixed-effects models tested whether baseline BE variables and property values were associated with differential changes in BMI at year 1 or year 2, adjusting for age, gender, race/ethnicity, education, home ownership, and county of residence. These associations were then tested for potential disparities by age group, gender, race/ethnicity, and education. Results: Road intersection density, access to food sources, and residential property values were inversely associated with BMI at baseline. At year 1, participants in the 3rd tertile of density metrics and with 4+ fast-food restaurants nearby showed less BMI gain compared to those in the 1st tertile or with 0 restaurants. At year 2, higher residential property values were predictive of lower BMI gain. There was evidence of differential associations by age group, gender, and education but not race/ethnicity. Conclusion: Inverse associations between BE metrics and residential property values at baseline demonstrated mixed associations with 1-and 2-year BMI change. More work is needed to understand how individual-level sociodemographic factors moderate associations between the BE, property values, and BMI change.

Keywords

Body-mass Index; Physical-activity; Food Environment; Socioeconomic-status; Weight-gain; Health; Quality

Back to the Future: Reintegrating Biology to Understand How Past Eco-evolutionary Change Can Predict Future Outcomes

Thompson, Cynthia L.; Alberti, Marina; Barve, Sahas; Battistuzzi, Fabia U.; Drake, Jeana L.; Goncalves, Guilherme Casas; Govaert, Lynn; Partridge, Charlyn; Yang, Ya. (2022). Back to the Future: Reintegrating Biology to Understand How Past Eco-evolutionary Change Can Predict Future Outcomes. Integrative And Comparative Biology, 61(6), 2218-2232.

View Publication

Abstract

During the last few decades, biologists have made remarkable progress in understanding the fundamental processes that shape life. But despite the unprecedented level of knowledge now available, large gaps still remain in our understanding of the complex interplay of eco-evolutionary mechanisms across scales of life. Rapidly changing environments on Earth provide a pressing need to understand the potential implications of eco-evolutionary dynamics, which can be achieved by improving existing eco-evolutionary models and fostering convergence among the sub-fields of biology. We propose a new, data-driven approach that harnesses our knowledge of the functioning of biological systems to expand current conceptual frameworks and develop corresponding models that can more accurately represent and predict future eco-evolutionary outcomes. We suggest a roadmap toward achieving this goal. This long-term vision will move biology in a direction that can wield these predictive models for scientific applications that benefit humanity and increase the resilience of natural biological systems. We identify short, medium, and long-term key objectives to connect our current state of knowledge to this long-term vision, iteratively progressing across three stages: (1) utilizing knowledge of biological systems to better inform eco-evolutionary models, (2) generating models with more accurate predictions, and (3) applying predictive models to benefit the biosphere. Within each stage, we outline avenues of investigation and scientific applications related to the timescales over which evolution occurs, the parameter space of eco-evolutionary processes, and the dynamic interactions between these mechanisms. The ability to accurately model, monitor, and anticipate eco-evolutionary changes would be transformational to humanity's interaction with the global environment, providing novel tools to benefit human health, protect the natural world, and manage our planet's biosphere.

Keywords

Rapid Evolution; Ecological Interactions; Niche Construction; Climate-change; Phenotype; Community; Selection; Fitness; Consequences; Variability

City Planning Policies to Support Health and Sustainability: An International Comparison of Policy Indicators for 25 Cities

Lowe, Melanie; Adlakha, Deepti; Sallis, James F.; Salvo, Deborah; Cerin, Ester; Moudon, Anne Vernez; Higgs, Carl; Hinckson, Erica; Arundel, Jonathan; Boeing, Geoff; Liu, Shiqin; Mansour, Perla; Gebel, Klaus; Puig-ribera, Anna; Mishra, Pinki Bhasin; Bozovic, Tamara; Carson, Jacob; Dygryn, Jan; Florindo, Alex A.; Ho, Thanh Phuong; Hook, Hannah; Hunter, Ruth F.; Lai, Poh-chin; Molina-garcia, Javier; Nitvimol, Kornsupha; Oyeyemi, Adewale L.; Ramos, Carolina D. G.; Resendiz, Eugen; Troelsen, Jens; Witlox, Frank; Giles-corti, Billie. (2022). City Planning Policies to Support Health and Sustainability: An International Comparison of Policy Indicators for 25 Cities. Lancet Global Health, 10(6), E882-E894.

View Publication

Abstract

City planning policies influence urban lifestyles, health, and sustainability. We assessed policy frameworks for city planning for 25 cities across 19 lower-middle-income countries, upper-middle-income countries, and high-income countries to identify whether these policies supported the creation of healthy and sustainable cities. We systematically collected policy data for evidence-informed indicators related to integrated city planning, air pollution, destination accessibility, distribution of employment, demand management, design, density, distance to public transport, and transport infrastructure investment. Content analysis identified strengths, limitations, and gaps in policies, allowing us to draw comparisons between cities. We found that despite common policy rhetoric endorsing healthy and sustainable cities, there was a paucity of measurable policy targets in place to achieve these aspirations. Some policies were inconsistent with public health evidence, which sets up barriers to achieving healthy and sustainable urban environments. There is an urgent need to build capacity for health-enhancing city planning policy and governance, particularly in low-income and middle-income countries.

Keywords

Physical-activity; Population Health; Walkability

Deciphering the Impact of Urban Built Environment Density on Respiratory Health Using a Quasi-cohort Analysis of 5495 Non-smoking Lung Cancer Cases

Wang, Lan; Sun, Wenyao; Moudon, Anne Vernez; Zhu, Yong-guan; Wang, Jinfeng; Bao, Pingping; Zhao, Xiaojing; Yang, Xiaoming; Jia, Yinghui; Zhang, Surong; Wu, Shuang; Cai, Yuxi. (2022). Deciphering the Impact of Urban Built Environment Density on Respiratory Health Using a Quasi-cohort Analysis of 5495 Non-smoking Lung Cancer Cases. Science Of The Total Environment, 850.

View Publication

Abstract

Introduction: Lung cancer is a major health concern and is influenced by air pollution, which can be affected by the den-sity of urban built environment. The spatiotemporal impact of urban density on lung cancer incidence remains unclear, especially at the sub-city level. We aimed to determine cumulative effect of community-level density attributes of the built environment on lung cancer incidence in high-density urban areas. Methods: We selected 78 communities in the central city of Shanghai, China as the study site; communities included in the analysis had an averaged population density of 313 residents per hectare. Using data from the city cancer surveil-lance system, an age-period-cohort analysis of lung cancer incidence was performed over a five-year period (2009-2013), with a total of 5495 non-smoking/non-secondhand smoking exposure lung cancer cases. Community -level density measures included the density of road network, facilities, buildings, green spaces, and land use mixture. Results: In multivariate models, built environment density and the exposure time duration had an interactive effect on lung cancer incidence. Lung cancer incidence of birth cohorts was associated with road density and building coverage across communities, with a relative risk of 1middot142 (95 % CI: 1middot056-1middot234, P = 0middot001) and 1middot090 (95 % CI: 1middot053-1middot128, P < 0middot001) at the baseline year (2009), respectively. The relative risk increased exponentially with the exposure timeduration. As for the change in lung cancer incidence over the five-year period, lung cancer incidence of birth cohorts tended to increase faster in communities with a higher road density and building coverage. Conclusion: Urban planning policies that improve road network design and building layout could be important strate-gies to reduce lung cancer incidence in high-density urban areas.

Keywords

Air-quality; Pollutant Dispersion; Risk-factors; Land-use; Mortality; Exposure; Cities; Transport; Compact City; Longitudinal Analysis; Lung Cancer; Urban Planning

Differences in Weight Gain Following Residential Relocation in the Moving to Health (M2H) Study

Cruz, Maricela; Drewnowski, Adam; Bobb, Jennifer F.; Hurvitz, Philip M.; Moudon, Anne Vernez; Cook, Andrea; Mooney, Stephen J.; Buszkiewicz, James H.; Lozano, Paula; Rosenberg, Dori E.; Kapos, Flavia; Theis, Mary Kay; Anau, Jane; Arterburn, David. (2022). Differences in Weight Gain Following Residential Relocation in the Moving to Health (M2H) Study. Epidemiology, 33(5), 747-755.

View Publication

Abstract

Background: Neighborhoods may play an important role in shaping long-term weight trajectory and obesity risk. Studying the impact of moving to another neighborhood may be the most efficient way to determine the impact of the built environment on health. We explored whether residential moves were associated with changes in body weight. Methods: Kaiser Permanente Washington electronic health records were used to identify 21,502 members aged 18-64 who moved within King County, WA between 2005 and 2017. We linked body weight measures to environment measures, including population, residential, and street intersection densities (800 m and 1,600 m Euclidian buffers) and access to supermarkets and fast foods (1,600 m and 5,000 m network distances). We used linear mixed models to estimate associations between postmove changes in environment and changes in body weight. Results: In general, moving from high-density to moderate- or low-density neighborhoods was associated with greater weight gain postmove. For example, those moving from high to low residential density neighborhoods (within 1,600 m) gained an average of 4.5 (95% confidence interval [CI] = 3.0, 5.9) lbs 3 years after moving, whereas those moving from low to high-density neighborhoods gained an average of 1.3 (95% CI = -0.2, 2.9) lbs. Also, those moving from neighborhoods without fast-food access (within 1600m) to other neighborhoods without fast-food access gained less weight (average 1.6 lbs [95% CI = 0.9, 2.4]) than those moving from and to neighborhoods with fast-food access (average 2.8 lbs [95% CI = 2.5, 3.2]). Conclusions: Moving to higher-density neighborhoods may be associated with reductions in adult weight gain.

Keywords

Body-mass Index; Neighborhood Socioeconomic-status; New-york-city; Built Environment; Physical-activity; Food Environment; Urban Sprawl; Risk-factors; Obesity; Walking; Electronic Medical Records; Fast Foods; Population Density; Residential Density; Residential Moves; Supermarkets

Examining the Association between Urban Green Space and Viral Transmission of Covid-19 during the Early Outbreak

Zhai, Wei; Yue, Haoyu; Deng, Yihan. (2022). Examining the Association between Urban Green Space and Viral Transmission of Covid-19 during the Early Outbreak. Applied Geography, 147.

View Publication

Abstract

Even though exposure to urban green spaces (UGS) has physical and mental health benefits during COVID-19, whether visiting UGS will exacerbate viral transmission and what types of counties would be more impacted remain to be answered. In this research, we adopted mobile phone data to measure the county-level UGS visi-tation across the United States. We developed a Bayesian model to estimate the effective production number of the pandemic. To consider the spatial dependency, we applied the geographically weighted panel regression to estimate the association between UGS visitation and viral transmission. We found that visitations to UGS may be positively correlated with the viral spread in Florida, Idaho, New Mexico, Texas, New York, Ohio, and Penn-sylvania. Especially noteworthy is that the spread of COVID-19 in the majority of counties is not associated with green space visitation. Further, we found that when people visit UGS, there may be a positive association be-tween median age and viral transmission in New Mexico, Colorado, and Missouri; a positive association between concentration of blacks and viral transmission in North Dakota, Minnesota, Wisconsin, Michigan, and Florida; and a positive association between poverty rate and viral transmission in Iowa, Missouri, Colorado, New Mexico, and the Northeast United States.

Keywords

Public Spaces; Viral Transmission; Covid-19; Extraterrestrial Beings; Covid-19 Pandemic; Smartphones; Cell Phones; Memes; Big Data; Urban Green Space; Geographical Information-system; Parks; Accessibility; Regression; Community; Stress; Health; Level

Improving Cascadia Subduction Zone Residents’ Tsunami Preparedness: Quasi-experimental Evaluation of an Evacuation Brochure

Lindell, Michael K.; Jung, Meen Chel; Prater, Carla S.; House, Donald H. (2022). Improving Cascadia Subduction Zone Residents’ Tsunami Preparedness: Quasi-experimental Evaluation of an Evacuation Brochure. Natural Hazards, 114(1), 849-881.

View Publication

Abstract

This study surveyed 227 residents in three US Pacific Coast communities that are vulnerable to a Cascadia subduction zone tsunami. In the Brochure condition, information was presented online, followed by questions about tsunamis. Respondents in the Comparison condition received the same questionnaire by mail but did not view the brochure. Respondents in the Brochure condition had higher levels of perceived information sufficiency than those in the Comparison condition about three of the five tsunami topics. Both conditions had generally realistic expectations about most tsunami warning sources. However, they had unrealistically high expectations of being warned of a local tsunami by social sources, such as route alerting, that could not be implemented before first wave arrival. They also had unrealistically high expectations being warned of a distant tsunami by ground shaking from the source earthquake, whose epicenter would be too far away for them to feel. Moreover, respondents in both conditions expected higher levels of personal property damage and family casualties than is the case for most hazards, but their levels of negative affective response were not especially high. Overall, only 10% of the sample accessed the tsunami brochure even when sent repeated contacts and the brochure demonstrated modest effects for those who did access it. These results suggest that state and local officials should engage in repeated personalized efforts to increase coastal communities' tsunami emergency preparedness because distribution of tsunami brochures has only a modest effect on preparedness.

Keywords

Subduction Zones; Tsunamis; Emergency Management; Tsunami Warning Systems; Brochures; Preparedness; Communities; Cascadia Subduction Zone Tsunami; Hazard Warnings; Quasi-experiment; Risk Communication; Risk Information-seeking; Natural Warning Signs; Earthquake; Awareness; Responses; Behavior; Model; Wellington; Hazard; Threat; Earthquakes; Casualties; Subduction; Vulnerability; Emergency Preparedness; Emergency Warning Programs; Levels; Seismic Activity; Property Damage; Shaking; Earthquake Damage; Subduction (geology); Disaster Management; Cascadia