Skip to content

Place-based Improvements for Public Safety: Private Investment, Public Code Enforcement, and Changes in Crime at Microplaces across Six U.S. Cities

Tillyer, Marie Skubak; Acolin, Arthur; Walter, Rebecca J. (2022). Place-based Improvements for Public Safety: Private Investment, Public Code Enforcement, and Changes in Crime at Microplaces across Six U.S. Cities. Justice Quarterly, 44592.

View Publication

Abstract

Abstract Research demonstrates that crime concentrates at relatively few microplaces, and changes at a small proportion of locations can have a considerable influence on a city’s overall crime level. Yet there is little research examining what accounts for change in crime at microplaces. This study examines the relationship between two mechanisms for place-based improvements – private investment in the form of building permits and public regulation in the form of municipal code enforcement – and yearly changes in crime at street segments. We use longitudinal data from six cities to estimate Spatial Durbin Models with block group and census tract by year fixed effects. Building permits and code enforcement are significantly associated with reductions in crime on street segments across all cities, with spatial diffusion of benefits to nearby segments. These findings suggest public safety planning should include efforts that incentivize and compel physical improvements to high crime microplaces. [ABSTRACT FROM AUTHOR]; Copyright of JQ: Justice Quarterly is the property of Routledge and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Keywords

Code Enforcement; Crime And Place; Hot Spots; Investment; Place-based Improvements

Automated Extraction of Geometric Primitives with Solid Lines from Unstructured Point Clouds for Creating Digital Buildings Models

Kim, Minju; Lee, Dongmin; Kim, Taehoon; Oh, Sangmin; Cho, Hunhee. (2023). Automated Extraction of Geometric Primitives with Solid Lines from Unstructured Point Clouds for Creating Digital Buildings Models. Automation In Construction, 145.

View Publication

Abstract

Point clouds produced by laser scanners are an invaluable source of data for reconstructing multi-dimensional digital models that reflect the as-is conditions of built facilities. However, previous studies aimed to reconstruct models by overlaying the dataset on top of ground-truth reference models to manually adjust the accuracy of the output. Therefore, this paper describes the extraction of geometric primitives with solid lines—the simplest form of objectified data that computer-aided design systems can handle—from unorganized data points and creation of digital models of built facilities in a form of floor plan. The geometric primitives are extracted from 3D points by hybridizing machine learning algorithms, which are mean-shift clustering, non-convex hull, and random sample and consensus (RANSAC). This paper provides a solution for creating a new form of as-built model with high accuracy and robustness from scratch without the involvement of ground-truth solutions or manual adjustments. © 2022 Elsevier B.V.

Keywords

Computer Aided Design; Geometry; Laser Applications; Learning Algorithms; Machine Learning; Scanning; As-build Model Creation; Build Facility; From-point-to-line; Geometric Primitives; Laserscanners; Model Creation; Outline Extractions; Point-clouds; Point-to-line; Solid Lines

Racial Disparity in Exposure to Housing Cost Burden in the United States: 1980-2017

Hess, Chris; Colburn, Gregg; Crowder, Kyle; Allen, Ryan. (2022). Racial Disparity in Exposure to Housing Cost Burden in the United States: 1980-2017. Housing Studies, 37(10), 1821-1841.

View Publication

Abstract

This article uses the Panel Study of Income Dynamics to analyse Black–White differences in housing cost burden exposure among renter households in the USA from 1980 to 2017, expanding understanding of this phenomenon in two respects. Specifically, we document how much this racial disparity changed among renters over almost four decades and identify how much factors associated with income or housing costs explain Black–White inequality in exposure to housing cost burden. For White households, the net contribution of household, neighbourhood and metropolitan covariates accounts for much of the change in the probability of housing cost burden over time. For Black households, however, the probability of experiencing housing cost burden continued to rise throughout the period of this study, even after controlling for household, neighbourhood and metropolitan covariates. This suggests that unobserved variables like racial discrimination, social networks or employment quality might explain the increasing disparity in cost burden among for Black and White households in the USA.

Keywords

Housing; Racial Inequality; Households; Neighborhoods; Social Networks; Cost Burden; Housing Cost; Employment Discrimination; Housing Costs; Racial Discrimination; Social Factors; Dynamic Tests; Black White Differences; Tenants; Income Inequality; Race Factors; Social Organization; Cost Analysis; Black People; Racial Differences; Income; Exposure; Inequality; Social Interactions; Employment; United States--us

Back to the Future: Reintegrating Biology to Understand How Past Eco-evolutionary Change Can Predict Future Outcomes

Thompson, Cynthia L.; Alberti, Marina; Barve, Sahas; Battistuzzi, Fabia U.; Drake, Jeana L.; Goncalves, Guilherme Casas; Govaert, Lynn; Partridge, Charlyn; Yang, Ya. (2022). Back to the Future: Reintegrating Biology to Understand How Past Eco-evolutionary Change Can Predict Future Outcomes. Integrative And Comparative Biology, 61(6), 2218-2232.

View Publication

Abstract

During the last few decades, biologists have made remarkable progress in understanding the fundamental processes that shape life. But despite the unprecedented level of knowledge now available, large gaps still remain in our understanding of the complex interplay of eco-evolutionary mechanisms across scales of life. Rapidly changing environments on Earth provide a pressing need to understand the potential implications of eco-evolutionary dynamics, which can be achieved by improving existing eco-evolutionary models and fostering convergence among the sub-fields of biology. We propose a new, data-driven approach that harnesses our knowledge of the functioning of biological systems to expand current conceptual frameworks and develop corresponding models that can more accurately represent and predict future eco-evolutionary outcomes. We suggest a roadmap toward achieving this goal. This long-term vision will move biology in a direction that can wield these predictive models for scientific applications that benefit humanity and increase the resilience of natural biological systems. We identify short, medium, and long-term key objectives to connect our current state of knowledge to this long-term vision, iteratively progressing across three stages: (1) utilizing knowledge of biological systems to better inform eco-evolutionary models, (2) generating models with more accurate predictions, and (3) applying predictive models to benefit the biosphere. Within each stage, we outline avenues of investigation and scientific applications related to the timescales over which evolution occurs, the parameter space of eco-evolutionary processes, and the dynamic interactions between these mechanisms. The ability to accurately model, monitor, and anticipate eco-evolutionary changes would be transformational to humanity's interaction with the global environment, providing novel tools to benefit human health, protect the natural world, and manage our planet's biosphere.

Keywords

Rapid Evolution; Ecological Interactions; Niche Construction; Climate-change; Phenotype; Community; Selection; Fitness; Consequences; Variability

Selection of Wearable Sensor Measurements for Monitoring and Managing Entry-level Construction Worker Fatigue: A Logistic Regression Approach

Lee, Wonil; Lin, Ken-yu; Johnson, Peter W.; Seto, Edmund Y.w. (2022). Selection of Wearable Sensor Measurements for Monitoring and Managing Entry-level Construction Worker Fatigue: A Logistic Regression Approach. Engineering Construction & Architectural Management (09699988), 29(8), 2905-2923.

View Publication

Abstract

Purpose: The identification of fatigue status and early intervention to mitigate fatigue can reduce the risk of workplace injuries. Off-the-shelf wearable sensors capable of assessing multiple parameters are available. However, using numerous variables in the fatigue prediction model can elicit data issues. This study aimed at identifying the most relevant variables for measuring occupational fatigue among entry-level construction workers by using common wearable sensor technologies, such as electrocardiogram and actigraphy sensors. Design/methodology/approach: Twenty-two individuals were assigned different task workloads in repeated sessions. Stepwise logistic regression was used to identify the most parsimonious fatigue prediction model. Heart rate variability measurements, standard deviation of NN intervals and power in the low-frequency range (LF) were considered for fatigue prediction. Fast Fourier transform and autoregressive (AR) analysis were employed as frequency domain analysis methods. Findings: The log-transformed LF obtained using AR analysis is preferred for daily fatigue management, whereas the standard deviation of normal-to-normal NN is useful in weekly fatigue management. Research limitations/implications: This study was conducted with entry-level construction workers who are involved in manual material handling activities. The findings of this study are applicable to this group. Originality/value: This is the first study to investigate all major measures obtainable through electrocardiogram and actigraphy among current mainstream wearables for monitoring occupational fatigue in the construction industry. It contributes knowledge on the use of wearable technology for managing occupational fatigue among entry-level construction workers engaged in material handling activities. [ABSTRACT FROM AUTHOR]; Copyright of Engineering Construction & Architectural Management (09699988) is the property of Emerald Publishing Limited and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Keywords

Construction Workers; Wearable Technology; Logistic Regression Analysis; Fatigue (physiology); Frequency-domain Analysis; Heart Beat; Lifting & Carrying (human Mechanics); Construction Safety; Information And Communication Technology (ict) Applications; Management; Technology

Motivations to Prepare After the 2013 Cook Strait Earthquake, N.Z.

Doyle, Emma E. H.; Mcclure, John; Potter, Sally H.; Becker, Julia S.; Johnston, David M.; Lindell, Michael K.; Johal, Sarbjit; Fraser, Stuart A.; Coomer, Maureen A. (2018). Motivations to Prepare After the 2013 Cook Strait Earthquake, N.Z. International Journal Of Disaster Risk Reduction, 31, 637 – 649.

View Publication

Abstract

We investigated responses to the 2013 Cook Strait earthquake sequence, New Zealand. This included two foreshocks (M5.7 and M5.8) and a mainshock doublet pair: M6.5 Cook Strait (CS) earthquake on 21st July and M6.6 Lake Grassmere (LG) earthquake on Friday 16th August. We examined relationships between preparedness, experience and beliefs during the earthquakes, as well as concern and subsequent preparedness actions. Results indicate that earthquake characteristics (e.g., time, location) influence the types of preparedness actions. While there was a reduction in new actions from the first mainshock doublet earthquake (CS) to the second (LG), there were a large number of participants who reviewed or revisited their prior actions, related to their beliefs about impacts, in a form of problem-focused targeted action. Females took more actions than did males, and had a higher rate of immediate aftershock concern. For all participants, concern was greater after the CS earthquake than after the full earthquake sequence, supporting the findings of McClure et al. (2016) that there is a limited window after an event to maximise the opportunity for effective preparedness initiatives. Findings additionally suggest that such post-earthquake preparedness initiatives should consider the impacts that elicited the highest rate of concern in an event, and should tailor messages towards them. While this earthquake sequence resulted in low levels of impact and damage, it presents interesting findings regarding how disruption (in lieu of major damage) influences earthquake preparedness actions, which is particularly important to understand in highly active regions often exposed to smaller impact events.

Keywords

Seismic Hazard Adjustments; Risk Communication; Decision-making; Natural Hazards; Unrealistic Optimism; Different Regions; Volcanic Crisis; Perception; Disaster; Behavior; Earthquakes; Preparedness; Beliefs; Concern; Actions; Gender

Training Of Low-literacy And Low-english-proficiency Hispanic Workers On Construction Fall Fatality

Lin, Ken-yu; Lee, Wonil; Azari, Rahman; Migliaccio, Giovanni C. (2018). Training Of Low-literacy And Low-english-proficiency Hispanic Workers On Construction Fall Fatality. Journal Of Management In Engineering, 34(2).

View Publication

Abstract

The construction industry has made extensive efforts to improve the safety of its labor force through various approaches, including training. However, many construction workers in the United States are recent immigrants who lack English proficiency and do not possess sufficient literacy levels in their own language for training comprehension. This reduces the effectiveness of traditional text-dominated translated training materials, which depend on both literacy and proficiency in a language. Thus, in this study, the authors used three-dimensional (3D) visualization to overcome the communication barriers that hinder effective safety training for low-literacy (LL) and low-English-proficiency (LEP) construction workers. This article summarizes the contributions of a study sponsored by the Occupational Safety and Health Administration (OSHA) Susan Harwood Training Grant Program; it describes the methodology to develop scenario-based 3D training materials on fall safety for LL and LEP workers and to validate the effectiveness of the materials. The results show that 3D training materials improve interaction between trainer and trainee during safety training, facilitate learning processes, and can overcome some of the communication barriers that hinder effective safety training. (c) 2017 American Society of Civil Engineers.

Keywords

Chemical Hazards; Computer Based Training; Construction Industry; Hazardous Materials; Industrial Training; Occupational Health; Occupational Safety; Personnel; Safety; Low-literacy; Low-english-proficiency Hispanic Workers; Construction Fall Fatality; Extensive Efforts; Labor Force; Construction Workers; English Proficiency; Sufficient Literacy Levels; Training Comprehension; Training Materials; Three-dimensional Visualization; Communication Barriers; Effective Safety Training; Health Administration Susan Harwood Training Grant Program; Fall Safety; Occupational Injuries; United-states; Industry; Health; Education; Issues; Occupational Health And Safety; Training; Visualization; Fall Protection; Case Study

Is There a Limit to Bioretention Effectiveness? Evaluation of Stormwater Bioretention Treatment Using a Lumped Urban Ecohydrologic Model and Ecologically Based Design Criteria

Wright, Olivia M.; Istanbulluoglu, Erkan; Horner, Richard R.; Degasperi, Curtis L.; Simmonds, Jim. (2018). Is There a Limit to Bioretention Effectiveness? Evaluation of Stormwater Bioretention Treatment Using a Lumped Urban Ecohydrologic Model and Ecologically Based Design Criteria. Hydrological Processes, 32(15), 2318 – 2334.

View Publication

Abstract

In this study, we developed the urban ecohydrology model (UEM) to investigate the role of bioretention on watershed water balance, runoff production, and streamflow variability. UEM partitions the land surface into pervious, impervious, and bioretention cell fractions. Soil moisture and vegetation dynamics are simulated in pervious areas and bioretention cells using a lumped ecohydrological approach. Bioretention cells receive runoff from a fraction of impervious areas. The model is calibrated in an urban headwater catchment near Seattle, WA, USA, using hourly weather data and streamflow observations for 3years. The calibrated model is first used to investigate the relationship between streamflow variability and bioretention cell size that receives runoff from different values of impervious area in the watershed. Streamflow variability is quantified by 2 indices, high pulse count (HPC), which quantifies the number of flow high pulses in a water year above a threshold, and high pulse range (HPR), which defines the time over which the pulses occurred. Low values of these indices are associated with improved stream health. The effectiveness of the modelled bioretention facilities are measured by their influence on reducing HPC and HPR and on flow duration curves in comparison with modelled fully forested conditions. We used UEM to examine the effectiveness of bioretention cells under rainfall regimes that are wetter and drier than the study area in an effort to understand linkages between the degree of urbanization, climate, and design bioretention cell size to improve inferred stream health conditions. In all model simulations, limits to the reduction of HPC and HPR indicators were reached as the size of bioretention cells grew. Bioretention was more effective as the rainfall regime gets drier. Results may guide bioretention design practices and future studies to explore climate change impacts on bioretention design and management.

Keywords

Performance Assessment; Hydrologic Alteration; Automated Techniques; Management-practices; Land-cover; Streams; Water; Impact; Area; Runoff; Bioretention; Ecohydrology; Green Infrastructure; Stormwater; Stream Health; Urban Hydrology; Evaluation; Urbanization; Watersheds; Soil Moisture; Water Balance; Stream Flow; Design; Variability; Ecological Monitoring; Computer Simulation; Storms; Climate Change; Duration; Water Runoff; Flow Duration Curves; Flow Duration; Cell Size; Soils; Duration Curves; Rainfall; Rivers; Cells; Headwaters; Surface Runoff; Dynamics; Rainfall Regime; Catchment Area; Design Criteria; Environmental Impact; Retention Basins; Soil Dynamics; Stream Discharge; Climatic Changes; Meteorological Data; Headwater Catchments

Cohort Profile: Twins Study of Environment, Lifestyle Behaviours and Health

Duncan, Glen E.; Avery, Ally; Hurvitz, Philip M.; Moudon, Anne Vernez; Tsang, Siny; Turkheimer, Eric. (2019). Cohort Profile: Twins Study of Environment, Lifestyle Behaviours and Health. International Journal Of Epidemiology, 48(4), 1041.

View Publication

Keywords

Twin Studies; Neighborhoods; Native Americans; Normalized Difference Vegetation Index; Life Style; Twins; Body-mass Index; Physical-activity; Neighborhood Walkability; Waist Circumference; Built Environment; Causal Inference; Deprivation; Validation; Registry; Obesity