Skip to content

Dynamic Life Cycle Assessment: A Review of Research for Temporal Variations in Life Cycle Assessment Studies

Su, Shu; Li, Xiaodong; Zhu, Chen; Lu, Yujie; Lee, Hyun Woo. (2021). Dynamic Life Cycle Assessment: A Review of Research for Temporal Variations in Life Cycle Assessment Studies. Environmental Engineering Science, 38(11), 1013 – 1026.

View Publication

Abstract

Life cycle assessment (LCA) is a comprehensive and important environmental management tool around the world. However, lacking temporal information has been a major challenge. In the past decade, dynamic LCA (DLCA), which incorporates temporal variations into assessment, has been an emerging research topic with increasing publications. A timely comprehensive review is needed to present current progress and discuss future directions. This article reviews 144 DLCA articles quantitatively and qualitatively. A bibliometric approach is adopted to conduct co-occurrence analysis and cluster analysis of DLCA studies. The research progress, approaches, and limitations of three temporal variation types (i.e., dynamic life cycle inventory, dynamic characterization factors, and dynamic weighting factors) in DLCA studies are systematically analyzed and discussed. It is concluded that: (1) dynamic inventory analysis is usually conducted by collecting time-differentiated data at each time step. Field monitoring, simulation, scenario analysis, and prediction based on historical data are common approaches. (2) Dynamic characterization studies primarily focus on two impact categories: global warming and toxicity. More studies are in need. (3) Various methods and indicators (i.e., dynamic pollution damage cost, temporal environmental policy targets, and discount rates) are used to solve the dynamic weighting issue, and they have specific limitations. Finally, three interesting topics are discussed: comparison between dynamic and static results, the large data amount issue, and the trend of tools development. This review offers a holistic view on temporal variations in DLCA studies and provides reference and directions for future dynamic studies.

Keywords

Literature Reviews; Cluster Analysis (statistics); Global Warming; Environmental Management; Discount Prices; Emission Inventories; Dynamic Characterization; Dynamic Inventory Analysis; Dynamic Weighting; Environmental Impact; Life Cycle Assessment; Temporal Variation; Cluster Analysis; Life Cycle; 'current; Dynamic Inventory Analyse; Dynamic Lca; Environmental Management Tool; Inventory Analysis; Research Topics; Temporal Information; Dependent Climate Impact; Greenhouse-gas Emission; Biogenic Carbon; Assessment Framework; Fresh-water; Electricity-generation; Energy Efficiency; Wheat Production; Embodied Energy; Time

Comparative Life Cycle Assessment of Mass Timber and Concrete Residential Buildings: A Case Study in China

Chen, Cindy X.; Pierobon, Francesca; Jones, Susan; Maples, Ian; Gong, Yingchun; Ganguly, Indroneil. (2022). Comparative Life Cycle Assessment of Mass Timber and Concrete Residential Buildings: A Case Study in China. Sustainability, 14(1).

View Publication

Abstract

As the population continues to grow in China's urban settings, the building sector contributes to increasing levels of greenhouse gas (GHG) emissions. Concrete and steel are the two most common construction materials used in China and account for 60% of the carbon emissions among all building components. Mass timber is recognized as an alternative building material to concrete and steel, characterized by better environmental performance and unique structural features. Nonetheless, research associated with mass timber buildings is still lacking in China. Quantifying the emission mitigation potentials of using mass timber in new buildings can help accelerate associated policy development and provide valuable references for developing more sustainable constructions in China. This study used a life cycle assessment (LCA) approach to compare the environmental impacts of a baseline concrete building and a functionally equivalent timber building that uses cross-laminated timber as the primary material. A cradle-to-gate LCA model was developed based on onsite interviews and surveys collected in China, existing publications, and geography-specific life cycle inventory data. The results show that the timber building achieved a 25% reduction in global warming potential compared to its concrete counterpart. The environmental performance of timber buildings can be further improved through local sourcing, enhanced logistics, and manufacturing optimizations.

Keywords

Mass Timber; Embodied Carbon; Climate Change; Carbon Reduction; Building Footprint; Built Environment; Forest Products; Life Cycle Analysis; Environmental Impacts; Wood Laminates; Geography; Concrete; Flooring; Manufacturing; Global Warming; Concrete Construction; Construction Materials; Emissions Trading; Greenhouse Gases; Residential Areas; Energy Consumption; Life Cycle Assessment; Greenhouse Effect; Life Cycles; Construction Industry; Logistics; Floor Coverings; Urbanization; Timber; Urban Environments; Building Components; Emissions; Residential Buildings; Carbon Footprint; Urban Areas; Environmental Impact; Building Construction; Case Studies; Wood Products; Mitigation; Buildings; Timber (structural); United States--us; China

Symbiotic And Regenerative Sustainability Frameworks: Moving Towards Circular City Implementation

Horn, Erin; Proksch, Gundula. (2022). Symbiotic And Regenerative Sustainability Frameworks: Moving Towards Circular City Implementation. Frontiers In Built Environment, 7.

View Publication

Abstract

Growing in popularity, the circular city framework is at the leading-edge of a larger and older transitional dialogue which envisions regenerative, circular, and symbiotic systems as the future of urban sustainability. The need for more research supporting the implementation of such concepts has been often noted in literature. To help address this gap, this holistic review assesses a range of pertinent sustainability frameworks as a platform to identify actionable strategies which can be leveraged to support and implement circular city goals. This assessment is grounded in a holistic overview of related frameworks across interdisciplinary and scalar domains including circular city, the food-water-energy nexus, circular economy, bioeconomy, industrial symbiosis, regenerative design, and others. Building on these interrelationships, the applied strategies espoused within these publications are synthesized and assessed in the context of circular city implementation. From an initial 250 strategies identified in literature, thirty-four general implementation strategies across six thematic areas are distinguished and discussed, finding strong overlaps in implementation strategies between frameworks, and opportunities to further develop and harness these synergies to advance circular city toward sustainable urban futures.

Keywords

Circular City; Implementation Strategies; Literature Review; Circular Economy; Fwe-nexus; Regenerative Design; Systems Integration; Environmental Assessment; Rooftop Greenhouses; Anaerobic-digestion; Urban Agriculture; Built Environment; Waste Management; Climate-change; Carbon Nexus; Food Nexus; Economy

Maximizing the Sustainability of Integrated Housing Recovery Efforts

El-Anwar, Omar; El-Rayes, Khaled; Elnashai, Amr S. (2010). Maximizing the Sustainability of Integrated Housing Recovery Efforts. Journal Of Construction Engineering And Management, 136(7), 794 – 802.

View Publication

Abstract

The large-scale and catastrophic impacts of Hurricanes Katrina and Rita in 2005 challenged the efficacy of traditional postdisaster temporary housing methods. To address these challenges, the U.S. Congress appropriated $400 million to the Department of Homeland Security to support alternative housing pilot programs, which encourage innovative housing solutions that will facilitate sustainable and permanent affordable housing in addition to serving as temporary housing. Facilitating and maximizing the sustainability of postdisaster alternative housing is an important objective that has significant social, economic, and environmental impacts. This paper presents the development of a novel optimization model that is capable of (1) evaluating the sustainability of integrated housing recovery efforts under the alternative housing pilot program and (2) identifying the housing projects that maximize sustainability. An application example is analyzed to demonstrate the use of the developed model and its unique capabilities in maximizing the sustainability of integrated housing recovery efforts after natural disasters.

Keywords

Northridge Earthquake; United-states; Disasters; Optimization; Postdisaster Alternative Housing; Sustainability; Housing Recovery

Effects of Mid-Twenty-first Century Climate and Land Cover Change on the Hydrology Of the Puget Sound Basin, Washington

Cuo, Lan; Beyene, Tazebe K.; Voisin, Nathalie; Su, Fengge; Lettenmaier, Dennis P.; Alberti, Marina; Richey, Jeffrey E. (2011). Effects of Mid-Twenty-first Century Climate and Land Cover Change on the Hydrology Of the Puget Sound Basin, Washington. Hydrological Processes, 25(11), 1729 – 1753.

View Publication

Abstract

The distributed hydrology-soil-vegetation model (DHSVM) was used to study the potential impacts of projected future land cover and climate change on the hydrology of the Puget Sound basin, Washington, in the mid-twenty-first century. A 60-year climate model output, archived for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), was statistically downscaled and used as input to DHSVM. From the DHSVM output, we extracted multi-decadal averages of seasonal streamflow, annual maximum flow, snow water equivalent (SWE), and evapotranspiration centred around 2030 and 2050. Future land cover was represented by a 2027 projection, which was extended to 2050, and DHSVM was run (with current climate) for these future land cover projections. In general, the climate change signal alone on sub-basin streamflow was evidenced primarily through changes in the timing of winter and spring runoff, and slight increases in the annual runoff. Runoff changes in the uplands were attributable both to climate (increased winter precipitation, less snow) and land cover change (mostly reduced vegetation maturity). The most climatically sensitive parts of the uplands were in areas where the current winter precipitation is in the rain-snow transition zone. Changes in land cover were generally more important than climate change in the lowlands, where a substantial change to more urbanized land use and increased runoff was predicted. Both the annual total and seasonal distribution of freshwater flux to Puget Sound are more sensitive to climate change impacts than to land cover change, primarily because most of the runoff originates in the uplands. Both climate and land cover change slightly increase the annual freshwater flux to Puget Sound. Changes in the seasonal distribution of freshwater flux are mostly related to climate change, and consist of double-digit increases in winter flows and decreases in summer and fall flows. Copyright (C) 2010 John Wiley & Sons, Ltd.

Keywords

Joaquin River-basin; Water-resources; Change Impacts; Model; Sensitivity; Temperature; Prediction; Streamflow; Forecasts; Humidity; Hydrologic Prediction; Climate Change Impacts; Land Cover Change Impacts

Exposure of Bicyclists to Air Pollution in Seattle, Washington Hybrid Analysis Using Personal Monitoring and Land Use Regression

Hong, E-Sok Andy; Bae, Christine. (2012). Exposure of Bicyclists to Air Pollution in Seattle, Washington Hybrid Analysis Using Personal Monitoring and Land Use Regression. Transportation Research Record, 2270, 59 – 66.

View Publication

Abstract

The increase in urban bicycling facilities, raises public health concerns for potential exposure of bicyclists to traffic emissions. For an assessment of bicyclists' exposure to local traffic emissions, a hybrid approach is presented; it combines personal monitoring and a land use regression (LUR) model. Black carbon, a proxy variable for traffic-related air pollution, was measured with an Aethalometer along the predesignated bicycle route in Seattle, Washington, for 10 days, during a.m. and p.m. peak hours (20 sampling campaigns). Descriptive statistics and three-dimensional pollution maps were used to explore temporal variations and to identify pollution hot spots. The LUR model was developed to quantify the influence of spatial covariates on black carbon concentrations along the designated route. The results indicated that the black carbon concentrations fluctuated throughout the sampling periods and showed statistically significant diurnal and monthly patterns. The hot spot analysis suggests that proximity to traffic and other physical environments have important impacts on bicyclists' exposure and demand further investigation on the localized effects of traffic emissions on exposure levels. The LUR model explains 46% of the variations in black carbon concentrations, and significant relationships are found with types of bicycle route facility, wind speed, length of truck routes, and transportation and utility land uses. This research is the first application of the LUR approach in quantifying bicyclists' exposure to air pollution in transport microenvironments. This study provides a rationale for encouraging municipalities to develop effective strategies to mitigate the health risks of exposure to local traffic emissions in complex urban bicycling environments.

Keywords

Particulate Matter; Diesel Exhaust; Health; Model; Particles; Asthma; City

A Suggested Color Scheme for Reducing Perception-Related Accidents on Construction Work Sites

Yi, June-Seong; Kim, Yong-Woo; Kim, Ki-Aeng; Koo, Bonsang. (2012). A Suggested Color Scheme for Reducing Perception-Related Accidents on Construction Work Sites. Accident Analysis And Prevention, 48, 185 – 192.

View Publication

Abstract

Changes in workforce demographics have led to the need for more sophisticated approaches to addressing the safety requirements of the construction industry. Despite extensive research in other industry domains, the construction industry has been passive in exploring the impact of a color scheme: perception-related accidents have been effectively diminished by its implementation. The research demonstrated that the use of appropriate color schemes could improve the actions and psychology of workers on site, thereby increasing their perceptions of potentially dangerous situations. As a preliminary study, the objects selected by rigorous analysis on accident reports were workwear, safety net, gondola, scaffolding, and safety passage. The colors modified on site for temporary facilities were adopted from existing theoretical and empirical research that suggests the use of certain colors and their combinations to improve visibility and conspicuity while minimizing work fatigue. The color schemes were also tested and confirmed through two workshops with workers and managers currently involved in actual projects. The impacts of color schemes suggested in this paper are summarized as follows. First, the color schemes improve the conspicuity of facilities with other on site components, enabling workers to quickly discern and orient themselves in their work environment. Secondly, the color schemes have been selected to minimize the visual work fatigue and monotony that can potentially increase accidents. (C) 2011 Elsevier Ltd. All rights reserved.

Keywords

Construction Industry Accidents; Industrial Hygiene; Industrial Safety; Empirical Research; Sensory Perception; Work Environment; Demographic Surveys; Job Performance; Color Scheme; Construction Industry; Labor Demography; Perception-related Accident; Accident Prevention; Accidents; Demography; Human Resource Management; Population Statistics; Color Schemes; Construction Works; Dangerous Situations; Rigorous Analysis; Safety Requirements; Temporary Facilities; Work Environments; Psychological Climate; Drivers; Emotion; Model

Empirical Assessment of Spatial Prediction Methods for Location Cost-Adjustment Factors

Migliaccio, Giovanni C.; Guindani, Michele; D’Incognito, Maria; Zhang, Linlin. (2013). Empirical Assessment of Spatial Prediction Methods for Location Cost-Adjustment Factors. Journal Of Construction Engineering & Management, 139(7), 858 – 869.

View Publication

Abstract

In the feasibility stage of a project, location cost-adjustment factors (LCAFs) are commonly used to perform quick order-of-magnitude estimates. Nowadays, numerous LCAF data sets are available in North America, but they do not include all locations. Hence, LCAFs for unsampled locations need to be inferred through spatial interpolation or prediction methods. Using a commonly used set of LCAFs, this paper aims to test the accuracy of various spatial prediction methods and spatial interpolation methods in estimating LCAF values for unsampled locations. Between the two regression-based prediction models selected for the study, geographically weighted regression analysis (GWR) resulted the most appropriate way to model the city cost index as a function of multiple covariates. As a direct consequence of its spatial nonstationarity, the influence of each single covariate differed from state to state. In addition, this paper includes a first attempt to determine if the observed variability in cost index values could be at least partially explained by independent socioeconomic variables. (C) 2013 American Society of Civil Engineers.

Keywords

Construction Industry; Interpolation; Regression Analysis; Socio-economic Effects; Spatial Prediction Methods; Location Cost-adjustment Factors; Empirical Assessment; Lcaf; Order-of-magnitude Estimates; North America; Unsampled Locations; Spatial Interpolation Methods; Geographically Weighted Regression Analysis; Gwr; Independent Socioeconomic Variables; Inflation; Indexes; Estimation; Geostatistics; Construction Costs; Planning; Budgeting

Messy Work in Virtual Worlds: Exploring Discovery and Synthesis in Virtual Teams

Dossick, Carrie Sturts(1). (2014). Messy Work in Virtual Worlds: Exploring Discovery and Synthesis in Virtual Teams. Lecture Notes In Computer Science (including Subseries Lecture Notes In Artificial Intelligence And Lecture Notes In Bioinformatics), 8683, 134 – 142.

View Publication

Abstract

The challenges of engineering team collaboration—establishing trust, fostering productive informal communication, cultivating knowledge exchange—are often exacerbated in virtual teams by geographical separation as well as team members’ cultural and linguistic differences. Researchers have observed that powerful collaboration in collocated teams is supported by shared visualizations with which the team engages in informal, flexible and active ways. In studying virtual team interactions in a virtual world known as the CyberGRID, we see that just as with AEC collocated teams, shared visualizations were instrumental for the teams as they define, understand, and generate knowledge when working on interrelated tasks. Emerging from this analysis is an empirically supported theory that while avatar-model interaction supports mutual discovery, more messy interactions of brainstorming, knowledge exchange and synthesis requires flexible, active, and informal shared visualizations. © Springer International Publishing Switzerland 2014.

Keywords

Communication; Flow Visualization; Information Technology; Knowledge Management; Visualization; Building Information Model; Bim; Collaboration; Geographical Separation; Global Virtual Teams; Informal Communication; Linguistic Differences; Virtual Team Interactions; Virtual Worlds

Computerized Integrated Project Management System for a Material Pull Strategy

Kim, Sang-Chul; Kim, Yong-Woo. (2014). Computerized Integrated Project Management System for a Material Pull Strategy. Journal Of Civil Engineering And Management, 20(6), 849 – 863.

View Publication

Abstract

The purpose of this paper is to present a computerized integrated project management system and report results of a survey on the effectiveness of the system. The system consists of a scheduling system, material management system, labor/equipment system, and safety/quality control system. The backbone system is a scheduling system that adopts a production planning system and a project scheduling system. The lowest level in the scheduling system is a daily work management system, which is linked to each functional management system (i.e. material management system, labor/equipment system, and safety/quality control system). The paper focuses on the material management and scheduling systems to implement a material pull system to reduce material inventories on site. Details of material management and scheduling systems are discussed, and a sample application is presented to demonstrate the features of the proposed computer application system. The paper presents practitioners and researchers with a practical tool to integrate material management and scheduling systems for site personnel.

Keywords

Construction; Lean Construction; Material Management System; Integrated System; Daily Work Management