EarthLab announced their Innovation Grants for 2024-25 for projects focused on Climate and Social Justice. The awardees were announced in March 2024, and 2 of the 5 selected projects include CBE researchers. Project Title: Catalyzing Just Circular Communities: A Feasibility Study of a Large-Scale Anaerobic Biodigester to Generate Hyper-local, Community-Owned Clean Energy Infrastructure in Seattle’s South Park CBE Team Members: Catherine De Almeida, Associate Professor, Landscape Architecture; Gundula Proksch, Associate Professor, Architecture. Project Title: Healing Amazonian Soils with Science and…
Research Theme: Climate & Energy
Scholarship on climate change mitigation and adaptation, as well as energy efficiency
Interactions between climate change and urbanization will shape the future of biodiversity
Urban, M.C., Alberti, M., De Meester, L. et al. Interactions between climate change and urbanization will shape the future of biodiversity. Nat. Clim. Chang. (2024). https://doi.org/10.1038/s41558-024-01996-2
Abstract
Climate change and urbanization are two of the most prominent global drivers of biodiversity and ecosystem change. Fully understanding, predicting and mitigating the biological impacts of climate change and urbanization are not possible in isolation, especially given their growing importance in shaping human society. Here we develop an integrated framework for understanding and predicting the joint effects of climate change and urbanization on ecology, evolution and their eco-evolutionary interactions. We review five examples of interactions and then present five hypotheses that offer opportunities for predicting biodiversity and its interaction with human social and cultural systems under future scenarios. We also discuss research opportunities and ways to design resilient landscapes that address both biological and societal concerns.
2023 Carbon Leadership Forum North American Material Baselines, Baseline Report
Waldman, B., Hyatt, A., Carlisle, S., Palmeri, J., and Simonen, K. (2023). 2023 Carbon Leadership Forum North American Material Baselines (version 2). Carbon Leadership Forum, University of Washington. Seattle, WA. August 2023. http://hdl.handle.net/1773/49965
Abstract
The CLF Baseline values represent an estimate of industry-average GHG emissions for construction materials manufactured in North America. An overwhelming majority of the CLF Baselines published in this report are based on a North American industry-wide EPD if one was available at the time of publication. As such, it is appropriate to use this number as a rough estimate of a product type’s embodied carbon before a specific product has been selected or as a reference value against which product-level comparisons can be made.
Each material category has a detailed appendix that includes a description of the embodied carbon impacts, the available EPDs, and summary statistics. The Appendices in this report allow users to better understand the availability of existing industry-wide and product EPDs, and the variability of product types across a category. The snapshot of available EPDs summarized in each Appendix was assembled using the EC3 database in Fall 2022.
Life Cycle Lab
The Life Cycle Lab at UW’s College of Built Environments leads research to advance life cycle assessment (LCA) data, methods and approaches to enable optimization of materials, buildings and infrastructure. Our work is structured to inform impactful policies and practices that support global decarbonization efforts. We envision a transformed, decarbonized building industry – better buildings for a better planet.
Our group is led by Professor Kate Simonen. Since arriving at UW in 2009, she has conducted research and spearheaded initiatives focused on accelerating the transformation of the building sector to radically reduce the greenhouse gas emissions attributed to materials (also known as embodied carbon) used in buildings and infrastructure. From June 2010 until April 2024 she directed the Carbon Leadership Forum (CLF) as it was hosted in UW’s College of Built Environments. The core of CLF’s work has been to lay essential foundations for understanding embodied carbon: a framework for comprehensive strategy, rigorous analysis, and transparent reporting that can support design tools, effective policy, and collective action.
In April 2024, two new entities were created to expand the program’s influence and impact: the Carbon Leadership Forum launched as an independent nonprofit organization and the newly named Life Cycle Lab was created to support the next generation of researchers and pursue critical embodied carbon research with an increased focus on academic publications. Learn more about this transition via this announcement.
Life Cycle Lab members include professional research staff, research assistants, students advised by Prof. Simonen, undergraduate interns and student assistants. Many of our members are formally affiliated with the Carbon Leadership Forum and the two organizations continue to actively collaborate developing strategies and executing aligned initiatives.
Projects associated with Life Cycle Lab include:
A Comparative Review of Polymer, Bacterial-based, and Alkali-Activated (also Geopolymer) Binders: Production, Mechanical, Durability, and Environmental impacts (life cycle assessment (LCA))
Nodehi, M., Aguayo, F., Madey, N., & Zhou, L. (2024). A Comparative Review of Polymer, Bacterial-based, and Alkali-Activated (also Geopolymer) Binders: Production, Mechanical, Durability, and Environmental impacts (life cycle assessment (LCA)). Construction & Building Materials, 422. https://doi.org/10.1016/j.conbuildmat.2024.135816
View Publication
Abstract
This review paper presents a comparative evaluation of polymer, bacterial-based, alkali-activated, and geopolymer binders in regard to their production methods, mechanical properties, their environmental/life cycle assessment (LCA), and durability when exposed to deteriorating cycles (such as sulfates, acids, and high temperatures). The significance of this study is to compare the results of over 400 journal papers, which present an in-depth analysis of fresh and hardened state properties of various binders that are advocated in the literature. Historically, Portland cement is generally considered a binder that plays a major role in any cementitious composites because of its high availability, and relatively inexpensive cost. Despite its significant benefits, it is known that the manufacturing process of Portland cement is energy and carbon intensive, and the resulted material often has shortcomings when exposed to deteriorating causes such as sulfates, acids, and high temperatures. However, recent movement toward net-zero as well as ultra-high-performance practices has increased the need for a more sustainable and durable binding system. Based on the result of this paper, each binder presents specific advantages when compared to Portland cement for specific applications that can be a better choice for their ultra-high capabilities and ecological properties. This includes the significantly better performance of alkali-activated binders (specifically geopolymers), under high temperatures, or very rapid strength gain of polymer (e.g., epoxy, polyester, and vinyl ester) binders, making them great alternatives to Portland cement, for rapid repair and rehabilitation purposes. Similarly, bacterial concrete also have certain capabilities such as long term durability and the potential for a continued self-repair or self-healing. In terms of environmental impacts, however, polymer binders are heavily depedant on their source of energy (e.g., petroleum vs. bio-based resins) while alkali-activated concretes and geopolymers have activators' large contributions to overall LCA impact categories. For bacterial binders, the used urea and nutrition can play a key role in their LCA results. Finally, based on the highlighted capabilities of each binder, recommendations on performance-based or hybrid design methods and specifications for an optimized system are also provided. Novel areas in polymer, bacterial-based, alkali-activated, and geopolymer binders are also included.
Keywords
Binding agents; Polymer concreteBacterial (or bio) concrete; Alkali-activated materials and geopolymer; Mechanical and durability properties
2024 CBE Inspire Fund Awardees Announced
The CBE Inspire Fund Awardees for the 2024 cycle have been selected! Their project names and team members are outlined below. Title: Mycelium Grow Lab for Student-led Research Team: Gundula Proksch (Associate Professor, Architecture), Tyler Sprague (Associate Professor, Architecture) Title: Exhibition of the works of OUR: Office of (Un)certainty Research Team: Vikram Prakash (Professor, Architecture) Title: Emergence, Resilience, and Future(s) of Urban Informality in Seattle Team: Julie Johnson (Associate Professor, Landscape Architecture), Manish Chalana (Associate Professor, Urban Design and Planning)…
Identifying recurrent and persistent landslides using satellite imagery and deep learning: A 30-year analysis of the Himalaya
Tzu-Hsin Karen Chen, Mark E. Kincey, Nick J. Rosser, Karen C. Seto, Identifying recurrent and persistent landslides using satellite imagery and deep learning: A 30-year analysis of the Himalaya, Science of The Total Environment, Volume 922, 2024, 171161, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2024.171161.
Abstract
This paper presents a remote sensing-based method to efficiently generate multi-temporal landslide inventories and identify recurrent and persistent landslides. We used free data from Landsat, nighttime lights, digital elevation models, and a convolutional neural network model to develop the first multi-decadal inventory of landslides across the Himalaya, spanning from 1992 to 2021. The model successfully delineated >265,000 landslides, accurately identifying 83 % of manually mapped landslide areas and 94 % of reported landslide events in the region. Surprisingly, only 14 % of landslide areas each year were first occurrences, 55–83 % of landslide areas were persistent and 3–24 % had reactivated. On average, a landslide-affected pixel persisted for 4.7 years before recovery, a duration shorter than findings from small-scale studies following a major earthquake event. Among the recovered areas, 50 % of them experienced recurrent landslides after an average of five years. In fact, 22 % of landslide areas in the Himalaya experienced at least three episodes of landslides within 30 years. Disparities in landslide persistence across the Himalaya were pronounced, with an average recovery time of 6 years for Western India and Nepal, compared to 3 years for Bhutan and Eastern India. Slope and elevation emerged as significant controls of persistent and recurrent landslides. Road construction, afforestation policies, and seismic and monsoon activities were related to changes in landslide patterns in the Himalaya.
Keywords
Landslide inventory; Landslide evolution; Vegetation recovery; Multi-temporalSpatiotemporal analysis; Machine learning
Unraveling energy justice in NYC urban buildings through social media sentiment analysis and transformer deep learning
Ashayeri, M., & Abbasabadi, N. (2024). Unraveling energy justice in NYC urban buildings through social media sentiment analysis and transformer deep learning. Energy and Buildings, 306, 113914-. https://doi.org/10.1016/j.enbuild.2024.113914
View Publication
Abstract
This study explores the intricate relationship between human sentiment on social media data, herein tweet posts on X platform, urban building characteristics, and the socio-spatial dynamics of New York City (NYC) boroughs. Leveraging Natural Language Processing (NLP) techniques, particularly sentiment analysis, augmented by the capabilities of transformer deep learning models, RoBERTa, the study places particular emphasis on the term ‘Stay-at-Home’ to encapsulate the pronounced shift in building occupancy during the pandemic's inaugural year. This focus intertwines with pivotal terms like ‘Energy Bill’ and ‘HVAC’, shedding light on their interconnected implications. The sentiment analysis leverages data from New York City's PLUTO and the Department of Energy's LEAD databases to emotional disparities connected to urban building characteristics as well as demographic and socioeconomic factors. This analytical approach unravels prevailing public emotions and extends the discussion to include energy justice concerns, viewing them through the lens of the city's built infrastructure. The research uncovers profound disparities in the built environment and the allocation of resources in NYC, highlighting the critical need to embrace a spatial justice framework for a sustainable future. This research can aid designers, planners, and policymakers in their efforts to promote equitable and inclusive urban development.
Legacies of redlining lead to unequal cooling effects of urban tree canopy
Jung, M. C., Yost, M. G., Dannenberg, A. L., Dyson, K., & Alberti, M. (2024). Legacies of redlining lead to unequal cooling effects of urban tree canopy. Landscape and Urban Planning, 246. https://doi.org/10.1016/j.landurbplan.2024.105028
View Publication
Abstract
Redlining—a racially discriminatory policy of systematic disinvestment established by the Home Owners’ Loan Corporation (HOLC) in the 1930s and continued until the late 1960s—still influences the contemporary landscape of cities in the US. While the heterogeneous distribution of land surface temperature and tree canopy cover between neighborhoods with different HOLC grades have been recently examined, the development of long-term and city-specific heat management strategies is still limited. Here, we explored the effect of redlining in Portland, Oregon, and Philadelphia, Pennsylvania, to assess its contemporary impact on climate equity. We performed a change analysis of land surface temperature and tree canopy area over the past and introduced mixed-effects models to test the intra- and inter-city differences in canopy cooling effects between the different HOLC grades. We found that (1) persistent temporal patterns of lower land surface temperatures and larger tree canopy areas are observed in higher HOLC grades, (2) greater green equity was achieved through contrasting temporal changes in tree canopy areas across HOLC grades in Portland and Philadelphia, and (3) opposite patterns exist between these cities, with stronger canopy cooling effects in neighborhoods with a Low HOLC grade in Portland and those with a High HOLC grade in Philadelphia. Differences in tree canopy change between the two cities over the past decade highlight potential influences of city-specific tree planting practices. Local planners should back tree planting initiatives to equitably mitigate urban heat exposure, considering historical redlining contexts and contemporary landscape features.
Keywords
Redlining; HOLC grade; Tree canopy; Land surface temperature; Tree equity
Causal effects of place, people, and process on rooftop solar adoption through Bayesian inference
Min, Y., & Ko, I. (2023). Causal effects of place, people, and process on rooftop solar adoption through Bayesian inference. Energy (Oxford), 285, 129510-. https://doi.org/10.1016/j.energy.2023.129510.
Abstract
While previous studies have established correlations between rooftop solar adoption and various factors, a comprehensive understanding of the underlying causal mechanisms has been limited by the intricate interrelationships among these variables. To address this gap, we propose a Bayesian causal inference approach that examines the interplay of various factors influencing rooftop solar adoption across multiple cities. By employing post-phenomenology, we uncover latent variables encompassing place, people, and process, shedding light on how they shape public responses to emerging energy technologies. We analyze the causal effects of these factors and highlight the significance of housing and built environment attributes in determining energy expenditure and rooftop solar adoption, emphasizing the need for policies that target energy equity. Additionally, we reveal the influence of neighborhood spillovers on adoption, indicating the role of social norms and information diffusion. The observed city-level variability underscores the importance of local contexts and location-specific factors in the adoption process. Furthermore, we highlight the need to consider causal relationships and the indirect effects of people-related attributes mediated through place-related attributes. Overall, these findings contribute to a deeper understanding of the factors shaping rooftop solar adoption via causal modeling and underscore the importance of tailored policies to promote adoption.
Keywords
Spillover effects; Energy equity; Post-phenomenology; Ignorability; Factor analysis; Clean energy; Photovoltaic systems; Overcoming barriers; Technology adoption; Decision-making; Energy justice; United-States; Vulnerability; Diffusion; Deployment; Responses