Skip to content

Coastal Adaptations with the Shoalwater Bay Tribe: Centering Place and Community to Address Climate Change and Social Justice

The proposed community-based participatory action research project is a collaborative research, planning and design initiative that will enable a UW research team to work with the Shoalwater Bay Indian Tribe to explore sustainable and culturally relevant strategies for an upland expansion in response to climate change-driven sea level rise and other threats to their coastal ecosystems and community. The situation is urgent as the reservation is located in the most rapidly eroding stretch of Pacific coastline in the US, on near-sea-level land vulnerable also to catastrophic tsunamis. The project will advance the Tribe’s master plan and collaboratively develop a model of climate adaptive, culture-affirming and change-mitigating environmental strategies for creating new infrastructure, housing and open spaces in newly acquired higher elevation land adjacent to the reservation. Design and planning strategies will draw on culturally-based place meanings and attachments to support a sense of continuity, ease the transition, and create new possibilities for re-grounding. Sustainable strategies generated by the project will draw on both traditional ecological knowledge and scientific modeling of environmental change. The project will involve the following methods and activities:

  • The creation of a Tribal scientific and policy Advisory Board with representatives from the Tribal Council, elder, youth, state and county agencies, and indigenous architects and planners;
  • Student-led collaborative team-building and research activities that will also engage Tribal youth;
  • Systematic review of the Tribe’s and neighboring county plans;
  • Interviews, focus groups and community workshops to identify priority actions, needs and strategies;
  • Adaptation of existing research on sustainable master planning, design and carbon storing construction materials; and
  • The development of culturally meaningful and sustainable building prototypes.

Deliverables include a report of findings summarizing community assets and values, and priorities for the upland expansion vetted by Tribal leaders, documentation and evaluation of the UW-community partnership and engagement process, digitized web- based geo-narratives and story maps and technical recommendations for culturally-informed schematic designs, sustainable construction methods and low-embodied carbon storing materials. The project process and outcomes will have broad applicability for other vulnerable coastal communities and can be used to support their climate adaptation efforts as well.

Research Team
Principal Investigator: Daniel Abramson, College of Built Environments, Urban Design and Planning, University of Washington
Community Lead: Jamie Judkins, Shoalwater Bay Indian Tribe

University of Washington Partners:
Rob Corser, Associate Professor, Department of Architecture
Julie Kriegh, Affiliate Lecturer, Departments of Construction Management and Architecture and Principal, Kriegh Architecture Studios | Design + Research
Jackson Blalock, Community Engagement Specialist, Washington Sea Grant
Lynne Manzo, Professor, Department of Landscape Architecture
Kristiina Vogt, Professor, School of Environmental and Forest Sciences

Community Partners:
Daniel Glenn, AIA, NCARB, Principal, 7 Directions Architects/Planners 
John David “J.D.” Tovey III, Confederated Tribes of the Umatilla Indian Reservation
Timothy Archer Lehman, Design and Planning Consultant and Lecturer

Clean Energy Justice: Different Adoption Characteristics of Underserved Communities in Rooftop Solar and Electric Vehicle Chargers in Seattle

Min, Yohan, Lee, Hyun Woo, & Hurvitz, Philip M. (2023). Clean Energy Justice: Different Adoption Characteristics of Underserved Communities in Rooftop Solar and Electric Vehicle Chargers in Seattle. Energy Research & Social Science, 96.

View Publication

Abstract

Concerns over global climate change have led to energy transition to clean energy systems with the development of various clean energy policies. However, social equity issues have emerged in association with the rapid transition of energy systems related to distributed energy resources (DERs), evidenced by disparities in clean energy access. While most existing studies have focused on several variables impacting the adoption of DERs, there is a dearth of studies concerning distributional and recognition justice specifically aimed at investigating: (1) which DER adoption variable is the most important among several variables identified in the literature; and (2) how adoption patterns vary by technologies and communities. The objective of the present study is to answer the two questions by examining the geographic distribution of rooftop solar and electric vehicle (EV) chargers and the related community attributes. Also, the study involves identifying latent variables by addressing inter-correlations among several adoption determinants. The results show that rooftop solar and EV charger adoptions in Seattle present disparities associated with geographic locations and community attributes. In particular, housing variables are the main indicators for rooftop solar adoption and even stronger in communities with low adoption rates. EV charger adoptions are strongly associated with economic variables. Furthermore, spatial inequality of rooftop solar adoption is higher than that of EV charger adoption. The study suggests housing-related support may increase the adoption of both technologies, particularly in communities with low adoption rates. Considering that the installations of rooftop solar and EV chargers were concentrated in particular communities, the study results imply that policies aimed at increasing the adoption of DERs should be tailored to local community characteristics.

Characterization of Vulnerable Communities in Terms of the Benefits and Burdens of the Energy Transition in Pacific Northwest Cities

Min, Yohan; Lee, Hyun Woo. (2023). Characterization of Vulnerable Communities in Terms of the Benefits and Burdens of the Energy Transition in Pacific Northwest Cities. Journal of Cleaner Production.

View Publication

Abstract

Energy transition to renewable sources has occurred along with the development of various clean energy policies aimed at decarbonization and electrification. However, the transition can inadvertently lead to social inequity resulting in increasing burdens on vulnerable communities. Although many studies have tried to define and identify vulnerable communities, there has been no study specifically aimed at characterizing vulnerable communities in terms of the benefits and burdens of such energy transition. In response, the objective of this study is to characterize vulnerable communities by examining rooftop solar adoption and energy expenditure using spatial and mixed-effect models. Rooftop solar adoption operationalizes energy resilience and benefits, and energy expenditure operationalizes energy dependence and burdens of the transition. The study also investigates the link between rooftop solar adoption and energy expenditure by considering city-level variability in three Pacific Northwest cities. The results show that Bellevue has 50.4% less rooftop solar adoption than Portland, while Portland has 16.1% or $223 more energy expenditure than Seattle. On average, an increase in annual energy expenditure of $431 is associated with 29% increase in rooftop solar adoption, specifically Bellevue, Seattle, and Portland by 21.4%, 39.1%, and 26.2%, respectively, but not vice versa. Furthermore, the group of communities more vulnerable in housing attributes has 15.2% less rooftop solar adoption than the group of more vulnerable communities in socioeconomic attributes. In addition, the city centers, commercial areas, or mid-rise and high-rise zones are found to have lower rooftop solar adoption and energy expenditure than other areas. The results suggest that policymakers should consider between-city variability when identifying vulnerable communities. Policies should also be tailored to local communities based on their attributes as communities with similar attributes tend to cluster together. Furthermore, policymakers should focus more on housing and built environment attributes to promote resilient communities.

College of Built Environments’ Research Restart Fund Awards Four Grants in Second Cycle

The College of Built Environments launched a funding opportunity for those whose research has been affected by the ongoing pandemic. The Research Restart Fund, with awards up to $5,000, has awarded 4 grants in the second of its two cycles. A grant was awarded to Manish Chalana, faculty member with Urban Design and Planning to help support his efforts to carry out archival research and fieldwork in India for his new book exploring the history and memory of non-dominant groups…

On the Tradeoffs between Embodied and Operational Carbon in Building Envelope Design: The Impact of Local Climates and Energy Grids

‌Méndez Echenagucia, T., Moroseos, T., & Meek, C. (2023).  On the Tradeoffs between Embodied and Operational Carbon in Building Envelope Design: The Impact of Local Climates and Energy Grids. Energy and Buildings, 238.

View Publication.

Abstract

Embodied and operational carbon tradeoffs in building envelopes are studied. • Envelope variables include wall assemblies, WWRs, glazing and shading. • Energy decarbonization models are used to determine the 30-year operational carbon. • Results show the importance of a total carbon approach to envelope design. • Over or under insulation can result in waste of 10–150 kgCO 2 e/m2. The building envelope has a substantial influence on a building's life cycle operational and embodied carbon emissions. Window-to-wall ratios, wall assemblies, shading and glazing types, have been shown to have a significant impact on total emissions. This paper provides building designers, owners, and policy makers with actionable guidance and a prioritization framework for establishing co-optimized lifecycle carbon performance of facade assembly components in a broad spectrum of climate contexts and energy carbon intensities. A large parametric study of building envelopes is conducted using building performance simulation and cradle-to-gate embodied carbon calculations in 6 US cities. The authors derive the total carbon emissions optimization for commercial office and residential space types using standard code-reference models and open-source lifecycle data. Comparisons between optimal total carbon solutions and (i) optimal operational carbon and (ii) minimum required assemblies, show the impact of under and over investing in envelope-related efficiency measures for each climate. Results show how the relationship between embodied and operational carbon is highly localized, that optimal design variables can vary significantly. In low carbon intensity energy grids, over investment in envelope embodied carbon can exceed as 10 kgCO 2 e/m2, while under investment in high carbon intensity grids can be higher than 150 kgCO 2 e/m2.

Keywords

Building performance simulation; Embodied carbon; Operational carbon; Parametric modeling

Anthony Hickling

Anthony Hickling joins CLF with experience in environmental and social sustainability as well as nonprofit management and fundraising. His foundations in sustainable building are informed by experience at Presidio Graduate School where he received an MBA in Sustainable Solutions, as well as his work on the sustainability team at Webcor Builders in San Francisco. Through academic and professional experience he has learned to navigate the priorities of traditional business stakeholders while incorporating social and environmental externalities. From executing successful marketing plans to determining research priorities, Anthony believes that wide impact considerations and diversity of thought should be embedded into all decision-making.

Allison Hyatt

Allison Hyatt is a Researcher with the Carbon Leadership Forum at the University of Washington. Prior to joining the CLF, Allison oversaw the design development of various high performance buildings for public sector projects at Siegel & Strain Architects. With years of experience as an architect, she prioritizes forging links between architectural practice and research. As a graduate student, her research assessed metrics to compare among operational carbon savings, embodied carbon expenditures, and monetary costs of different decarbonization strategies over time. In the spring of 2022, she received her Masters degree in Design Studies with a concentration in Energy and Environment from the Harvard University Graduate School of Design.

Brad Benke

Brad Benke, AIA, is a Research Engineer at the Carbon Leadership Forum focused on developing data-driven resources to help practitioners and policymakers adopt and scale decarbonization strategies in the built environment. With a background in deep-green architecture and consulting, Brad works to synthesize and improve life cycle assessment practices and tools within the AEC industry and deliver practical solutions for low-carbon building design and construction. His recent work includes leading the CLF WBLCA Benchmark Study and developing the background data and methodologies for the CLF Embodied Carbon Policy Reduction Calculator. Brad is a former co-chair of AIA Seattle’s Committee on the Environment, and a former Senior Architect at McLennan Design, where he led diverse teams and stakeholders toward achieving decarbonization goals for buildings and organizations across the country.

Megan Kalsman

Megan Kalsman is a Policy Researcher with the Carbon Leadership Forum at the University of Washington. She specializes in advancing the procurement of low-carbon materials and informs the development and implementation of cross-sectoral climate policies targeting embodied carbon.

Before joining the CLF, Megan completed her Master of Science degree at Lund University in Sweden in Environmental Management and Policy with the International Institute for Industrial Environmental Economics. She published her thesis project in 2021, on the intersection of gender equality with different environmental issues like climate change, biodiversity, and chemicals on an international policy scale.

Prior to studying in Sweden, Megan coordinated environmental policies and programs for local government agencies in California with a focus on toxic chemical reduction and pollution prevention. She helped in developing the first in the nation ban on toxic flame retardant chemicals in San Francisco. This served as a model policy for the State of California and other states in the U.S. passing similar policies. Her undergraduate degree was in Environmental Studies at San Francisco State University with a minor in Urban Planning and the Built Environment.

Megan’s work at the CLF combines her environmental research experience and policy design background. She strives to frame her work with an intersectional lens each day – protecting the health of people and the environment in an equitable way. At the CLF, Megan enjoys interacting with a variety of stakeholders around embodied carbon policies and ultimately working together towards a more sustainable and just future.

Evaluation Strategies on the Thermal Environmental Effectiveness of Street Canyon Clusters: A Case Study of Harbin, China

Li, Guanghao; Cheng, Qingqing; Zhan, Changhong; Yocom, Ken P. (2022). Evaluation Strategies on the Thermal Environmental Effectiveness of Street Canyon Clusters: A Case Study of Harbin, China. Sustainability, 14(20).

View Publication

Abstract

Urban overheating significantly affects people's physical and mental health. The addition of street trees is an essential, economical, and effective means by which to mitigate urban heat and optimize the overall thermal environment. Focusing on typical street canyon clusters in Harbin, China, landscape morphology was quantified by streetscape interface measurements (sky view factor, tree view factor, and building view factor). Through ENVI-met simulations, the correlation mechanism between streetscape interface measurements and thermal environment was evaluated, and optimization methods for assessing the thermal environment of urban streets were proposed. The results revealed: (1) The thermal environment optimization efficiency of general street canyon types was greatest when street tree spacing was 12 m. At present, the smaller spacing has not been simulated and may yield better thermal environment results. The average decrease in temperature (Ta), relative humidity (RH) and mean radiant temperature (MRT) was 0.78%, 2.23%, and 30.20%, respectively. (2) Specific street canyon types should adopt precise control strategies of streetscape interface according to their types to achieve the optimal balance between thermal environment optimization and cost. (3) Streetscape interface measurements and thermal environment indexes show quadratic correlation characteristics, and are critical points for further investigation. The conclusions are more specific than previous research findings, which are of great significance for decreasing the urban heat island effect at the block scale, improving residents' physical and mental health, and improving the urban environment quality.

Keywords

Heat Mitigation Strategies; Urban Green Areas; Sky View Factor; Cold Region; Comfort; Tree; Landscape; Park; Simulation; Density; Street Canyon Clusters; Streetscape Interface Measurement; Envi-met Simulation; Thermal Optimization