Milad Ashtiani is a Building and Materials Researcher with Carbon Leadership Forum. Milad is a civil engineer who received his PhD from the University of Washington in the summer of 2022. Milad is responsible for the execution of research and analysis, development of guidance documents and educational resources, and outreach across the design community to improve the quality, accuracy, and effectiveness of building performance tools, methods and data that address embodied carbon. As a building and materials researcher, Ashtiani works collaboratively with CLF’s internal research team as well as with architecture and engineering firms and research consortiums across North America with a focus on building performance, computation, embodied carbon assessments, and life cycle assessment (LCA).
Research Theme: Climate & Energy
Scholarship on climate change mitigation and adaptation, as well as energy efficiency
Amos Darko
Dr. Darko brings with him a wealth of expertise and experience in sustainability, sustainable built environment, sustainable construction, green building, modular construction, project management, and digital technologies including building information modeling and artificial intelligence.
Dr. Darko earned his Ph.D. degree from The Hong Kong Polytechnic University (PolyU) in 2019, and his BSc degree (First Class Honors) from Kwame Nkrumah University of Science and Technology (KNUST) in 2014. Before joining the University of Washington, Dr. Darko was a Research Assistant Professor at PolyU.
Dr. Darko has published numerous papers in leading international peer-reviewed journals, conferences, and books. His papers have been rated as highly cited and hot papers by the Web of Science. His paper is the most cited paper of all time in the International Journal of Construction Management. He has also been ranked among the world’s top 2% most cited scientists by Elsevier BV and Stanford University. Dr. Darko has received several awards for his outstanding work, including the Green Talents Award from the German Federal Ministry of Education and Research in 2020, the Global Top Peer Reviewer Award from the Web of Science Group in 2019, the Outstanding Overseas Young Scholars Award from Central South University in 2019, and the Best Construction Technology and Management Student Award from KNUST in 2014.
Dr. Darko’s work has been supported by the Research Grants Council of Hong Kong, Chief Secretary for Administration’s Office of Hong Kong, and several internal grants.
Dr. Darko is an Associate Editor of Green Building and Construction Economics, an Associate Editor of Humanities and Social Sciences Communications, and an Academic Editor of Advances in Civil Engineering.
“I am excited to collaborate with colleagues from diverse disciplines to tackle the pressing challenges of sustainability and climate change, and to contribute to shaping a more just and beautiful world,” said Dr. Darko.
Integration of Urban Science and Urban Climate Adaptation Research: Opportunities to Advance Climate Action
Lobo, J., Aggarwal, R. M., Alberti, M., Allen-Dumas, M., Bettencourt, L. M. A., Boone, C., Brelsford, C., Broto, V. C., Eakin, H., Bagchi-Sen, S., Meerow, S., D’Cruz, C., Revi, A., Roberts, D. C., Smith, M. E., York, A., Lin, T., Bai, X., Solecki, W., … Gauthier, N. (2023). Integration of urban science and urban climate adaptation research: opportunities to advance climate action. Npj Urban Sustainability, 3(1), 32–39. https://doi.org/10.1038/s42949-023-00113-0
Abstract
There is a growing recognition that responding to climate change necessitates urban adaptation. We sketch a transdisciplinary research effort, arguing that actionable research on urban adaptation needs to recognize the nature of cities as social networks embedded in physical space. Given the pace, scale and socioeconomic outcomes of urbanization in the Global South, the specificities and history of its cities must be central to the study of how well-known agglomeration effects can facilitate adaptation. The proposed effort calls for the co-creation of knowledge involving scientists and stakeholders, especially those historically excluded from the design and implementation of urban development policies.
EarthLab 2023-2024 Innovation Grant awardees
EarthLab selected the 2023-2024 Innovation Grant Awardees in April 2023. One of the projects chosen includes College of Built Environments researchers on the interdisciplinary team. The project description and research team is detailed below. “Cultivating Transdisciplinary Support for Equitable and Resilient Floodplain Solutions” Project Description: In 2021 a massive flood on the Nooksack River left a trail of destruction in its wake. Floods are the most expensive natural hazard in Washington State, a risk that is exacerbated by climate change….
College of Built Environments Faculty and Student receive Husky Sustainability Awards 2023
The Husky Sustainability Awards recognize individuals and groups across all University of Washington campuses who lead the way for sustainability at the University of Washington. This is the 14th year awards have been given by the UW Environmental Stewardship Committee. The Husky Sustainability Awards are given to students, faculty and staff from the Seattle, Bothell and Tacoma campuses who show impact, initiative, leadership and dedication around sustainability. Congratulations to the recipients from the College of Built Environments, who are listed below….
Does Compact Development Mitigate Urban Thermal Environments? Influences of Smart Growth Principles on Land Surface Temperatures in Los Angeles and Portland
Won, Jongho, and Meen Chel Jung. 2023. Does Compact Development Mitigate Urban Thermal Environments? Influences of Smart Growth Principles on Land Surface Temperatures in Los Angeles and Portland. Sustainable Cities and Society 90.
Abstract
The smart growth paradigm has emerged as a major planning framework to respond to the adverse outcomes of reckless development, but its influences on urban thermal environments are underexplored in the scholarly literature. Since elevated land surface temperature (LST) is closely related to the physical expansion of developed areas, it is necessary to identify the effects of smart growth strategies on LST. This study, therefore, investigated the relationships between LST, landscape variables, and smart growth variables at the census block group level in two distinct urban locales: the City of Los Angeles, California, and the City of Portland, Oregon, from 2010 to 2018. Through multivariate analyses—including the principal component analysis (PCA), K-means clustering, analysis of covariance (ANCOVA), and regression models—this study revealed the potential of urban forms promoted by the smart growth principles comprehensively to mitigate LST. Given the different features of built environments and planning systems between the two cities, the results of this study also indicate the necessity of considering local contexts rather than suggesting a “one-size-fits-all” policy.
Keywords
Smart growth; Compact development; Land surface temperature; Urban form; Landscape
Don’t take concrete for granite: the secret research life of CBE Department of Construction Management Assistant Professor and concrete materials researcher Fred Aguayo
Concrete can sequester carbon, and the cement that glues its components together has been used since antiquity. Now, CBE professor Fred Aguayo is introducing students to the complex world of concrete research.
College of Built Environments Announces 2023 Inspire Fund Awards
In 2021, the College of Built Environments launched the CBE Inspire Fund to “inspire” CBE research activities that are often underfunded, but for which a relatively small amount of support can be transformative. The Inspire Fund aims to support research where arts and humanities disciplines are centered, and community partners are engaged in substantive ways. Inspire Fund is also meant to support ‘seed’ projects, where a small investment in early research efforts may serve as a powerful lever for future…
Coastal Adaptations with the Shoalwater Bay Tribe: Centering Place and Community to Address Climate Change and Social Justice
The proposed community-based participatory action research project is a collaborative research, planning and design initiative that will enable a UW research team to work with the Shoalwater Bay Indian Tribe to explore sustainable and culturally relevant strategies for an upland expansion in response to climate change-driven sea level rise and other threats to their coastal ecosystems and community. The situation is urgent as the reservation is located in the most rapidly eroding stretch of Pacific coastline in the US, on near-sea-level land vulnerable also to catastrophic tsunamis. The project will advance the Tribe’s master plan and collaboratively develop a model of climate adaptive, culture-affirming and change-mitigating environmental strategies for creating new infrastructure, housing and open spaces in newly acquired higher elevation land adjacent to the reservation. Design and planning strategies will draw on culturally-based place meanings and attachments to support a sense of continuity, ease the transition, and create new possibilities for re-grounding. Sustainable strategies generated by the project will draw on both traditional ecological knowledge and scientific modeling of environmental change. The project will involve the following methods and activities:
- The creation of a Tribal scientific and policy Advisory Board with representatives from the Tribal Council, elder, youth, state and county agencies, and indigenous architects and planners;
- Student-led collaborative team-building and research activities that will also engage Tribal youth;
- Systematic review of the Tribe’s and neighboring county plans;
- Interviews, focus groups and community workshops to identify priority actions, needs and strategies;
- Adaptation of existing research on sustainable master planning, design and carbon storing construction materials; and
- The development of culturally meaningful and sustainable building prototypes.
Deliverables include a report of findings summarizing community assets and values, and priorities for the upland expansion vetted by Tribal leaders, documentation and evaluation of the UW-community partnership and engagement process, digitized web- based geo-narratives and story maps and technical recommendations for culturally-informed schematic designs, sustainable construction methods and low-embodied carbon storing materials. The project process and outcomes will have broad applicability for other vulnerable coastal communities and can be used to support their climate adaptation efforts as well.
Research Team
Principal Investigator: Daniel Abramson, College of Built Environments, Urban Design and Planning, University of Washington
Community Lead: Jamie Judkins, Shoalwater Bay Indian Tribe
University of Washington Partners:
Rob Corser, Associate Professor, Department of Architecture
Julie Kriegh, Affiliate Lecturer, Departments of Construction Management and Architecture and Principal, Kriegh Architecture Studios | Design + Research
Jackson Blalock, Community Engagement Specialist, Washington Sea Grant
Lynne Manzo, Professor, Department of Landscape Architecture
Kristiina Vogt, Professor, School of Environmental and Forest Sciences
Community Partners:
Daniel Glenn, AIA, NCARB, Principal, 7 Directions Architects/Planners
John David “J.D.” Tovey III, Confederated Tribes of the Umatilla Indian Reservation
Timothy Archer Lehman, Design and Planning Consultant and Lecturer
Clean Energy Justice: Different Adoption Characteristics of Underserved Communities in Rooftop Solar and Electric Vehicle Chargers in Seattle
Min, Yohan, Lee, Hyun Woo, & Hurvitz, Philip M. (2023). Clean Energy Justice: Different Adoption Characteristics of Underserved Communities in Rooftop Solar and Electric Vehicle Chargers in Seattle. Energy Research & Social Science, 96.
Abstract
Concerns over global climate change have led to energy transition to clean energy systems with the development of various clean energy policies. However, social equity issues have emerged in association with the rapid transition of energy systems related to distributed energy resources (DERs), evidenced by disparities in clean energy access. While most existing studies have focused on several variables impacting the adoption of DERs, there is a dearth of studies concerning distributional and recognition justice specifically aimed at investigating: (1) which DER adoption variable is the most important among several variables identified in the literature; and (2) how adoption patterns vary by technologies and communities. The objective of the present study is to answer the two questions by examining the geographic distribution of rooftop solar and electric vehicle (EV) chargers and the related community attributes. Also, the study involves identifying latent variables by addressing inter-correlations among several adoption determinants. The results show that rooftop solar and EV charger adoptions in Seattle present disparities associated with geographic locations and community attributes. In particular, housing variables are the main indicators for rooftop solar adoption and even stronger in communities with low adoption rates. EV charger adoptions are strongly associated with economic variables. Furthermore, spatial inequality of rooftop solar adoption is higher than that of EV charger adoption. The study suggests housing-related support may increase the adoption of both technologies, particularly in communities with low adoption rates. Considering that the installations of rooftop solar and EV chargers were concentrated in particular communities, the study results imply that policies aimed at increasing the adoption of DERs should be tailored to local community characteristics.