Skip to content

Of Mills and Malls: The Future of Urban Industrial Heritage in Neoliberal Mumbai

Chalana, Manish. (2012). Of Mills and Malls: The Future of Urban Industrial Heritage in Neoliberal Mumbai. Future Anterior: Journal Of Historic Preservation, History, Theory, And Criticism, 9(1), 1 – 15.

View Publication

Abstract

The mandate of historic preservation is to maintain vestiges of diverse cultural heritage, a task that is becoming increasingly difficult in rapidly globalizing India. Much of the country's urban heritage outside of the “monument-and-site” framework is threatened by massive restructuring of cities facilitated by neoliberal urban policies. Mumbai has a rich cultural heritage, associated with diverse sociocultural and economic groups. Much of this is threatened by development practices pursued by various forces with a particular vision of Mumbai as an emerging “global city.” In this work Chalana examines Girangaon, an early industrial district of Mumbai, currently being transformed by forces of domestic and global capital. He argues that Girangaon's urban industrial heritage is a significant piece of the city's development history, which future visions of a global metropolis should embrace. While the expansion of Mumbai's economy has benefited some avenues of preservation practice in Mumbai, in Girangaon its consequences have also been negative, as a working-class neighborhood is restructured into a hypermodern district for the elite. The current forms of preservation practice in the city have been insufficient in addressing the complexity around managing heritage in low-income neighborhoods. Girangaon, and Mumbai overall, reveal the many ways that economic, cultural, and political globalization can impact historic preservation practice.]

Associations between Neighborhood Built Environment, Residential Property Values, and Adult BMI Change: The Seattle Obesity Study III

Buszkiewicz, James H.; Rose, Chelsea M.; Ko, Linda K.; Mou, Jin; Moudon, Anne Vernez; Hurvitz, Philip M.; Cook, Andrea J.; Drewnowski, Adam. (2022). Associations between Neighborhood Built Environment, Residential Property Values, and Adult BMI Change: The Seattle Obesity Study III. SSM-Population Health, 19.

View Publication

Abstract

Objective: To examine associations between neighborhood built environment (BE) variables, residential property values, and longitudinal 1-and 2-year changes in body mass index (BMI). Methods: The Seattle Obesity Study III was a prospective cohort study of adults with geocoded residential addresses, conducted in King, Pierce, and Yakima Counties in Washington State. Measured heights and weights were obtained at baseline (n = 879), year 1 (n = 727), and year 2 (n = 679). Tax parcel residential property values served as proxies for individual socioeconomic status. Residential unit and road intersection density were captured using Euclidean-based SmartMaps at 800 m buffers. Counts of supermarket (0 versus. 1+) and fast-food restaurant availability (0, 1-3, 4+) were measured using network based SmartMaps at 1600 m buffers. Density measures and residential property values were categorized into tertiles. Linear mixed-effects models tested whether baseline BE variables and property values were associated with differential changes in BMI at year 1 or year 2, adjusting for age, gender, race/ethnicity, education, home ownership, and county of residence. These associations were then tested for potential disparities by age group, gender, race/ethnicity, and education. Results: Road intersection density, access to food sources, and residential property values were inversely associated with BMI at baseline. At year 1, participants in the 3rd tertile of density metrics and with 4+ fast-food restaurants nearby showed less BMI gain compared to those in the 1st tertile or with 0 restaurants. At year 2, higher residential property values were predictive of lower BMI gain. There was evidence of differential associations by age group, gender, and education but not race/ethnicity. Conclusion: Inverse associations between BE metrics and residential property values at baseline demonstrated mixed associations with 1-and 2-year BMI change. More work is needed to understand how individual-level sociodemographic factors moderate associations between the BE, property values, and BMI change.

Keywords

Body-mass Index; Physical-activity; Food Environment; Socioeconomic-status; Weight-gain; Health; Quality

Lingzi Wu

Lingzi Wu is an Assistant Professor with the Department of Construction Management (CM) at the University of Washington (UW). Prior to joining UW in September 2022, Dr. Wu served as a postdoctoral fellow in the Department of Civil and Environmental Engineering at University of Alberta, where she received her MSc and PhD in Construction Engineering and Management in 2013 and 2020 respectively. Prior to her PhD, Dr. Wu worked in the industrial construction sector as a project coordinator with PCL Industrial Management from 2013 to 2017.

An interdisciplinary scholar focused on advancing digital transformation in construction, Dr. Wu’s current research interests include (1) integration of advanced data analytics and complex system modeling to enhance construction practices and (2) development of human-in-the-loop decision support systems to improve construction performance (e.g., sustainability and safety). Dr. Wu has published 10 papers in top journals and conference proceedings, including the Journal of Construction Engineering and Management, Journal of Computing in Civil Engineering, and Automation in Construction. Her research and academic excellence has received notable recognition, including a “Best Paper Award” at the 17th International Conference on Modeling and Applied Simulation, and the outstanding reviewer award from the Journal of Construction Engineering and Management.

As an educator and mentor, Dr. Wu aims to create an inclusive, innovative, and interactive learning environment where students develop personal, technical, and transferable skills to grow today, tomorrow, and into the future.

Narjes Abbasabadi

Narjes Abbasabadi, Ph.D., is an Assistant Professor in the Department of Architecture at the University of Washington. Dr. Abbasabadi also leads the Sustainable Intelligence Lab. Abbasabadi’s research centers on sustainability and computation in the built environment. Much of her work focuses on advancing design research efforts through developing data-driven methods, workflows, and tools that leverage the advances in digital technologies to enable augmented intelligence in performance-based and human-centered design. With an emphasis on multi-scale exploration, her research investigates urban building energy flows, human systems, and environmental and health impacts across scales—from the scale of building to the scale of neighborhood and city.

Abbasabadi’s research has been published in premier journals, including Applied Energy, Building and Environment, Energy and Buildings, Environmental Research, and Sustainable Cities and Society. She received honors and awards, including “ARCC Dissertation Award Honorable Mention” (Architectural Research Centers Consortium (ARCC), 2020), “Best Ph.D. Program Dissertation Award” (IIT CoA, 2019), and 2nd place in the U.S. Department of Energy (DOE)’s Race to Zero Design Competition (DOE, 2018). In 2018, she organized the 3rd IIT International Symposium on Buildings, Cities, and Performance. She served as editor of the third issue of Prometheus Journal, which received the 2020 Haskell Award from AIA New York, Center for Architecture.

Prior to joining the University of Washington, she taught at the University of Texas at Arlington and the Illinois Institute of Technology. She also has practiced with several firms and institutions and led design research projects such as developing design codes and prototypes for low-carbon buildings. Most recently, she practiced as an architect with Adrian Smith + Gordon Gill Architecture (AS+GG), where she has been involved in major projects, including the 2020 World Expo. Abbasabadi holds a Ph.D. in Architecture from the Illinois Institute of Technology and Master’s and Bachelor’s degrees in Architecture from Tehran Azad University.

College of Built Environments’ Research Restart Fund Awards Four Grants in First of Two Cycles

The College of Built Environments launched a funding opportunity for those whose research has been affected by the ongoing pandemic. The Research Restart Fund, with awards up to $5,000, has awarded 4 grants in its first of two cycles. A grant was awarded to Real Estate faculty member Arthur Acolin, who is partnering with the City of Seattle’s Office of Planning and Community Development to understand barriers that homeowners, particularly those with lower incomes, face to building Accessory Dwelling Units…

Research Validation: Challenges and Opportunities in the Construction Domain

Lucko, Gunnar; Rojas, Eddy M. (2010). Research Validation: Challenges and Opportunities in the Construction Domain. Journal Of Construction Engineering And Management, 136(1), 127 – 135.

View Publication

Abstract

Validation of the research methodology and its results is a fundamental element of the process of scholarly endeavor. Approaches used for construction engineering and management research have included experiments, surveys and observational studies, modeling and simulation, theory building, case studies, and various subtypes thereof. Some studies use more than one approach. A particular contribution of this paper is that it reviews different types of validation using examples of studies, analyzes the specific challenges that were found to be significant, and presents how they were successfully overcome in each case. Another contribution is that it describes new opportunities for research validation that are emerging at the horizon as well as ongoing collaborative efforts to enhance the access of construction researchers to validation tools. This paper increases the awareness of the paramount role that validation techniques play in scholarly work by providing readers with recommendations to properly validate their own research efforts.

Keywords

Labor Productivity; Regression-models; Delivery-systems; Performance; Cost; Methodology; Management; Framework; Control Methods; Delphi Method; Models; Research Needs; Sampling Design; Statistical Analysis; Surveys; Validation; Verification

Data Fusion of Real-Time Location Sensing and Physiological Status Monitoring for Ergonomics Analysis of Construction Workers

Cheng, Tao; Migliaccio, Giovanni C.; Teizer, Jochen; Gatti, Umberto C. (2013). Data Fusion of Real-Time Location Sensing and Physiological Status Monitoring for Ergonomics Analysis of Construction Workers. Journal Of Computing In Civil Engineering, 27(3), 320 – 335.

View Publication

Abstract

Previous research and applications in construction resource optimization have focused on tracking the location of material and equipment. There is a lack of studies on remote monitoring for improving safety and health of the construction workforce. This paper presents a new approach for monitoring ergonomically safe and unsafe behavior of construction workers. The study relies on a methodology that utilizes fusion of data from continuous remote monitoring of construction workers' location and physiological status. To monitor construction workers activities, the authors deployed nonintrusive real-time worker location sensing (RTLS) and physiological status monitoring (PSM) technology. This paper presents the background and need for a data fusion approach, the framework, the test bed environment, and results to some case studies that were used to automatically identify unhealthy work behavior. Results of this study suggest a new approach for automating remote monitoring of construction workers safety performance by fusing data on their location and physical strain. DOI: 10.1061/(ASCE)CP.1943-5487.0000222. (C) 2013 American Society of Civil Engineers.

Keywords

Civil Engineering Computing; Construction Industry; Ergonomics; Occupational Health; Occupational Safety; Personnel; Sensor Fusion; Psm Technology; Rtls Technology; Construction Workforce Health; Construction Workforce Safety; Equipment Location; Material Location; Construction Resource Optimization; Construction Worker; Ergonomics Analysis; Physiological Status Monitoring; Realtime Location Sensing; Data Fusion; Exposure; Tracking; Demands; Sensors; System; Construction Worker Behavior; Remote Location Sensing; Work Sampling; Workforce Safety And Health

Physiological Condition Monitoring of Construction Workers.

Gatti, Umberto C.; Schneider, Suzanne; Migliaccio, Giovanni C. (2014). Physiological Condition Monitoring of Construction Workers. Automation In Construction, 44, 227 – 233.

View Publication

Abstract

Monitoring of workers' physiological conditions can potentially enhance construction workforce productivity, safety, and well-being. Recently, Physiological Status Monitors (PSMs) were validated as an accurate technology to assess physiological conditions during typical sport science and medicine testing procedures (e.g., treadmill and cycle ergometer protocols). However, sport science and medicine testing procedures cannot simulate routine construction worker movements in a comprehensive manner. Thus, this paper investigated the validity of two PSMs by comparing their measurements with gold standard laboratory instruments' measurements at rest and during dynamic activities resembling construction workforce's routine activities. Two physiological parameters such as heart rate and breathing rate were considered. Ten apparently healthy subjects participated in the study. One of the PSMs proved to be a viable technology in assessing construction workers' heart rate (correlation coefficient >= 0.74; percentage of differences within +/- 11 bpm >= 84.8%). (C) 2014 Elsevier B.V. All rights reserved,

Keywords

Construction Workers; Labor Supply; Labor Productivity; Well-being; Health Status Indicators; Heart Rate Monitoring; Physiology; Construction Management; Construction Worker; Ergonomics; Occupational Health And Safety; Physiological Status Monitoring Technology; Productivity; Work Physiological Demand; Work Physiology; Construction Industry; Monitoring; Occupational Safety; Medicine Testing; Sport Science; Psm; Physiological Status Monitors; Safety; Construction Workforce Productivity; Workers Monitoring; Physiological Condition Monitoring; Heart-rate Monitors; R-r Intervals; Statistical-methods; Respiratory Rate; Physical Load; Polar S810; Strain; Validity; Reliability; Validation