Skip to content

Advancing Impact of Education, Training, and Professional Experience on Integrated Project Delivery

Hyun Woo Lee; Anderson, S.M.; Yong-Woo Kim; Ballard, G.. (2014). Advancing Impact of Education, Training, and Professional Experience on Integrated Project Delivery. Practice Periodical On Structural Design And Construction, 19(1), 8 – 14.

View Publication

Abstract

With the increased interest in applying integrated forms of project delivery to complex and uncertain construction projects, the building industry has been experiencing an increased demand for integrated project delivery (IPD). With the trend, many empirical studies have examined the collaborative characteristics of IPD and reported that participants must make the necessary transition for its contractual, technological, and cultural requirements. However, little study has been done to investigate relevant education, training, or professional experience that can support the transition. In response, this study used an online survey that was designed to investigate the level and type of education, training, and professional experience of project members and their corresponding level of background knowledge for each IPD requirement. The key survey findings include (1) project members have the highest level of background knowledge on the cultural requirements of IPD, but the lowest level on the technological requirements; (2) the group with more design-build experience has more background knowledge; (3) the group that received an IPD kick-off training has more background knowledge; and (4) having a lean construction class can prepare students for the IPD environment. It is expected that the survey findings will advance the education, training, and levels of background knowledge of IPD participants, which will enhance their IPD experience accordingly.

Keywords

Buildings (structures); Construction Industry; Contracts; Cultural Aspects; Industrial Training; Professional Aspects; Project Management; Construction Project; Building Industry; Integrated Project Delivery; Ipd; Contractual Requirement; Cultural Requirement; Professional Experience; Design-build Experience; Training Impact; Education Impact

Domain Knowledge-Based Information Retrieval for Engineering Technical Documents

Shang-hsien Hsieh; Ken-yu Lin; Nai-wen Chi; Hsien-tang Lin. (2015). Domain Knowledge-Based Information Retrieval for Engineering Technical Documents. Ontology In The AEC Industry. A Decade Of Research And Development In Architecture, Engineering And Construction, chapter 1.

View Publication

Abstract

Technical documents with complicated structures are often produced in architecture/engineering/construction (AEC) projects and research. Information retrieval (IR) techniques provide a possible solution for managing the ever-growing volume and contexts of the knowledge embedded in these technical documents. However, applying a general-purpose search engine to a domain-specific technical document collection often produces unsatisfactory results. To address this problem, we research the development of a novel IR system based on passage retrieval techniques. The system employs domain knowledge to assist passage partitioning and supports an interactive concept-based expanded IR for technical documents in an engineering field. The engineering domain selected in this case is earthquake engineering, although the technologies developed and employed by the system should be generally applicable to many other engineering domains that use technical documents with similar characteristics. We carry out the research in a three-step process. In the first step, since the final output of this research is an IR system, as a prerequisite, we created a reference collection which includes 111 earthquake engineering technical documents from Taiwan's National Center for Research on Earthquake Engineering. With this collection, the effectiveness of the IR system can be further evaluated onceit is developed. In the second step, the research focuses on creating a base domain ontology using an earthquake-engineering handbook to represent the domain knowledge and to support the target IR system with the knowledge. In step three, the research focuses on the semantic querying and retrieval mechanisms and develops the OntoPassage approach to help with the mechanisms. The OntoPassage approach partitions a document into smaller passages, each with around 300 terms, according to the main concepts in the document. This approach is then used to implement the target domain knowledge-based IR system that allows users to interact with the system and perform concept-based query expansions. The results show that the proposed domain knowledge-based IR system can achieve not only an effective IR but also inform search engine users with a clear knowledge representation.

Keywords

Architecture; Construction; Engineering; Knowledge Based Systems; Ontologies (artificial Intelligence); Query Processing; Search Engines; Knowledge Representation; Concept-based Query Expansions; Base Domain Ontology; Earthquake Engineering; General-purpose Search Engine; Aec Projects; Architecture/engineering/construction Projects; Complicated Structures; Technical Documents; Domain Knowledge-based Information Retrieval

Anthropotechnology: Sloterdijk on Environmental Design and the Foamworlds of Co-Isolation

Mugerauer, Robert. (2016). Anthropotechnology: Sloterdijk on Environmental Design and the Foamworlds of Co-Isolation. Architecture And Culture, 4(2), 227 – 248.

View Publication

Abstract

The paper has two primary goals. The first is to reexamine the dynamics of cultural change by applying the innovative interpretations of German theorist and cultural historian Peter Sloterdijk, who contends that the ways we traditionally have made and understood our built environment are grossly inadequate in our contemporary media-saturated, war-weary, biotechnological world. The second is to show how such a reinterpretation of space, architecture, and culture could help us to learn to design better and act by way of an anthropotechnology (Sloterdijk's word) that is simultaneously developmental and threatening - that might enable us to find an orientation in a world of complexity, and thus more positively shape our lives and future world. Sloterdijk's intriguing concepts - spheres of immunization (bubbles, globes, foams), co-isolation, dyads, tensegrity - hold great promise for the next pulse of architectural, planning, and construction theory.

Keywords

Peter Sloterdijk; Anthropotechnology; Spheres Of Immunization (bubbles, Globes, Foams); Co-isolation; Housing

Stakeholder Management in Long-Term Complex Megaconstruction Projects: The Saemangeum Project

Park, Hyoungbae; Kim, Kyeongseok; Kim, Yong-woo; Kim, Hyoungkwan. (2017). Stakeholder Management in Long-Term Complex Megaconstruction Projects: The Saemangeum Project. Journal Of Management In Engineering, 33(4).

View Publication

Abstract

This paper identifies 31 critical success factors (CSFs) and suggests a framework for effective stakeholder management in long-term complex megaconstruction (LCM) projects that require more than 10 years for multipurpose development. The results of a survey on the prioritization of these 31 CSFs reveal that LCM projects involve more stakeholders than do general construction projects and require a correspondingly wider range of changes during each project. To identify more systematic and strategic approaches to stakeholder management in LCM projects, a framework was developed through factor analysis and focus-group interviews with project management experts. The framework is composed of the following five agendas: clear understanding of stakeholders, clear definition of the project, effective communication, responding to environmental changes, and social cooperation. The analysis results show that LCM projects require a stronger emphasis on responding to environmental changes and social cooperation. These results, along with the CSF priorities, reveal the necessity of taking customized approaches to LCM projects. The results of this analysis are expected to help LCM project managers effectively manage stakeholders. (C) 2017 American Society of Civil Engineers.

Keywords

Construction; Environmental Management; Project Management; Strategic Planning; Social Cooperation; Environmental Changes; Strategic Approaches; Construction Projects; Saemangeum Project; Long-term Complex Megaconstruction Projects; Stakeholder Management; Critical Success Factors (csfs); Long-term Complex Megaconstruction (lcm) Projects

Deep Learning in Design Workflows: The Elusive Design Pixel

Mahankali, Ranjeeth; Johnson, Brian R.; Anderson, Alex T. (2018). Deep Learning in Design Workflows: The Elusive Design Pixel. International Journal Of Architectural Computing, 16(4), 328 – 340.

View Publication

Abstract

The recent wave of developments and research in the field of deep learning and artificial intelligence is causing the border between the intuitive and deterministic domains to be redrawn, especially in computer vision and natural language processing. As designers frequently invoke vision and language in the context of design, this article takes a step back to ask if deep learning's capabilities might be applied to design workflows, especially in architecture. In addition to addressing this general question, the article discusses one of several prototypes, BIMToVec, developed to examine the use of deep learning in design. It employs techniques like those used in natural language processing to interpret building information models. The article also proposes a homogeneous data format, provisionally called a design pixel, which can store design information as spatial-semantic maps. This would make designers' intuitive thoughts more accessible to deep learning algorithms while also allowing designers to communicate abstractly with design software.

Keywords

Associative Logic; Creative Processes; Deep Learning; Embedding Vectors; Bimtovec; Homogeneous Design Data Format; Design Pixel; Idea Persistence

Intersections and Non-Intersections: A Protocol for Identifying Pedestrian Crash Risk Locations in GIS

Kang, Mingyu; Moudon, Anne Vernez; Kim, Haena; Boyle, Linda Ng. (2019). Intersections and Non-Intersections: A Protocol for Identifying Pedestrian Crash Risk Locations in GIS. International Journal Of Environmental Research And Public Health, 16(19).

View Publication

Abstract

Intersection and non-intersection locations are commonly used as spatial units of analysis for modeling pedestrian crashes. While both location types have been previously studied, comparing results is difficult given the different data and methods used to identify crash-risk locations. In this study, a systematic and replicable protocol was developed in GIS (Geographic Information System) to create a consistent spatial unit of analysis for use in pedestrian crash modelling. Four publicly accessible datasets were used to identify unique intersection and non-intersection locations: Roadway intersection points, roadway lanes, legal speed limits, and pedestrian crash records. Two algorithms were developed and tested using five search radii (ranging from 20 to 100 m) to assess the protocol reliability. The algorithms, which were designed to identify crash-risk locations at intersection and non-intersection areas detected 87.2% of the pedestrian crash locations (r: 20 m). Agreement rates between algorithm results and the crash data were 94.1% for intersection and 98.0% for non-intersection locations, respectively. The buffer size of 20 m generally showed the highest performance in the analyses. The present protocol offered an efficient and reliable method to create spatial analysis units for pedestrian crash modeling. It provided researchers a cost-effective method to identify unique intersection and non-intersection locations. Additional search radii should be tested in future studies to refine the capture of crash-risk locations.

Keywords

Traffic Crash; Walking; Collisions; Accidents; Models; Pedestrian Safety; Spatial Autocorrelation; Algorithm

Neurophysiological Testing for Assessing Construction Workers’ Task Performance at Virtual Height

Habibnezhad, Mahmoud; Puckett, Jay; Jebelli, Houtan; Karji, Ali; Fardhosseini, Mohammad Sadra; Asadi, Somayeh. (2020). Neurophysiological Testing for Assessing Construction Workers’ Task Performance at Virtual Height. Automation In Construction, 113.

View Publication

Abstract

Falling from heights is the primary cause of death and injuries at construction sites. As loss of balance has a fundamental effect on falling, it is important to understand postural regulation behavior during construction tasks at heights, especially those that require precise focus in an upright standing position (therefore, a dual-task demand on focus). Previous studies examined body sway during a quiet stance and dual tasks to understand latent factors affecting postural balance. Despite the success of these studies in discovering underlying factors, they lack a comprehensive analysis of a task's simultaneous cognitive load, postural sway, and visual depth. To address this limitation, this paper aims to examine construction workers' postural stability and task performance during the execution of visual construction tasks while standing upright on elevated platforms. To that end, two non-intrusive neurophysiological tests, a hand-steadiness task (HST) and a pursuit task (PT), were developed for construction tasks in a virtual environment (VE) as performance-based means to assess the cognitive function of workers at height. Workers' postural stability was measured by recording the mapped position of the Center of Pressure (COP) of the body on a posturography force plate, and the postural sway metrics subsequently calculated. A laboratory experiment was designed to collect postural and task performance data from 18 subjects performing the two batteries of tests in the virtual environment. The results demonstrated a significant decrease in the Root-Mean Square (RMS) of COP along the anterior-posterior axis during the Randomized Pursuit Task (RPT) and maximum body sway of the center of pressure (COP) in the mediolateral direction during both tests. Also, subjects exposed to high elevation predominately exhibit higher accuracy for RPT (P-value = 0.02) and lower accuracy for HST (P-value = 0.05). The results show that the combination of elevation-related visual depth and low-complexity dual tasks impairs task performance due to the elevation-induced visual perturbations and anxiety-driven motor responses. On the other hand, in the absence of visual depth at height, high task complexity surprisingly improves the pursuit tracking performance. As expected, during both tasks, alterations in postural control were manifested in the form of a body sway decrement as a compensatory postural strategy for accomplishing tasks at high elevation.

Keywords

Task Performance; Construction Workers; Test Design; Cognitive Load; Standing Position; Sitting Position; Neurophysiological Test; Postural Stability; Virtual Reality; Workers' Safety At Height; Fall-risk; Reaction-time; Fear; Real; Acrophobia; Balance; Safety

Demystifying Progressive Design Build: Implementation Issues and Lessons Learned through Case Study Analysis

Shang, Luming; Migliaccio, Giovanni C. (2020). Demystifying Progressive Design Build: Implementation Issues and Lessons Learned through Case Study Analysis. Organization Technology And Management In Construction, 12(1), 2095 – 2108.

View Publication

Abstract

The design-build (DB) project delivery method has been used for several decades in the US construction market. DB contracts are usually awarded on the basis of a multicriteria evaluation, with price as one of the most salient criteria. To ensure the project's success, an owner usually has to invest enough time and effort during scoping and early design to define a program, scope, and budget, ready for procurement and price generation. However, this process can become a burden for the owner and may lengthen the project development duration. As an alternative to the traditional DB, the progressive design-build (PDB) approach permits the selection of the DB team prior to defining the project program and/or budget. PDB has the advantage of maintaining a single point of accountability and allowing team selection based mainly on qualifications, with a limited consideration of price. Under PDB, the selected team works with the project stakeholders during the early design stage, while helping the owner balance scope and budget. However, the key to the effectiveness of PDB is its provision for the ongoing and complete involvement of the owner in the early design phase. Due to the differences between PDB and the other project delivery methods (e.g., traditional DB), project teams must carefully consider several factors to ensure its successful implementation. The research team conducted a case study of the University of Washington's pilot PDB project to complete the West Campus Utility Plant (WCUP). This paper carefully explores and summarizes the project's entire delivery process (e.g., planning, solicitation, design, and construction), its organizational structures, and the project performance outcomes. The lessons learned from the WCUP project will contribute to best practices for future PDB implementation.

Keywords

Progressive Design Build; Project Delivery Method

Factors Affecting Material-Cart Handling in the Roofing Industry: Evidence for Administrative Controls

Zhang, Zhenyu; Lin, Ken-yu; Lin, Jia-hua. (2021). Factors Affecting Material-Cart Handling in the Roofing Industry: Evidence for Administrative Controls. International Journal Of Environmental Research And Public Health, 18(4).

View Publication

Abstract

Material-cart handling can be strenuous and lead to overexertion injuries. The aim of this study is to produce a thorough understanding of how the cart condition, tire type, physical environment-related factors, and load interact to influence the ergonomics and productivity of cart handling. Eighteen roofing carts with different conditions, tires, and loads were tested by one subject on three laboratory tracks: one L-shaped, one with ramps within constrained spaces, and one with obstacles within constrained spaces. A multiple linear regression analysis was performed to quantify the main and interaction effects of the factors of interest on the cart operations. The research findings confirm that using aged carts increases the injury risk by as much as 30.5% and decreases productivity by 35.4%. Our study also highlights the necessity of keeping an open space for cart operation; the travel distance from a cart to a ramp/obstacle should be greater than 61 cm. Finally, the results suggest the at-risk thresholds for different ramp slopes and obstacle heights, and the safe load capacities for the various working circumstances that are common on construction sites. The evidence created in this study can be translated into administrative controls for cart handling to reduce overexertion injuries and enhance performance.

Keywords

Overexertion In Pulling And Pushing; Material Cart Handling; Roof Construction; Ergonomic Risk Factors; Administrative Control

The Effect of Luminance Distribution Patterns on Occupant Preference in a Daylit Office Environment

Van Den Wymelenberg, Kevin; Inanici, Mehlika; Johnson, Peter. (2010). The Effect of Luminance Distribution Patterns on Occupant Preference in a Daylit Office Environment. Leukos, 7(2), 103 – 122.

View Publication

Abstract

New research in daylighting metrics and developments in validated digital High Dynamic Range (HDR) photography techniques suggest that luminance based lighting controls have the potential to provide occupant satisfaction and energy saving improvements over traditional illuminance based lighting controls. This paper studies occupant preference and acceptance of patterns of luminance using HDR imaging and a repeated measures design methodology in a daylit office environment. Three existing luminance threshold analysis methods [method1: predetermined absolute luminance threshold (for example, 2000 cd/m(2)), method2: scene based mean luminance threshold, and method3: task based mean luminance threshold] were studied along with additional candidate metrics for their ability to explain luminance variability of 18 participant assessments of 'preferred' and 'just disturbing' scenes under daylighting conditions. Per-pixel luminance data from each scene were used to calculate Daylighting Glare Probability (DGP), Daylight Glare Index (DGI), and other candidate metrics using these three luminance threshold analysis methods. Of the established methods, the most consistent and effective metrics to explain variability in subjective responses were found to be; mean luminance of the task (using method3; (adj)r(2) = 0.59), mean luminance of the entire scene (using method2; (adj)r(2) = 0.44), and DGP using 2000 cd/m(2) as a glare source identifier (using method1; (adj)r(2) = 0.41). Of the 150 candidate metrics tested, the most effective was the 'mean luminance of the glare sources', where the glare sources were identified as 7* the mean luminance of the task position ((adj)r(2) = 0.64). Furthermore, DGP consistently performed better than DGI, confirming previous findings. 'Preferred' scenes never had more than similar to 10 percent of the field of view (FOV) that exceeded 2000 cd/m(2). Standard deviation of the entire scene luminance also proved to be a good predictor of satisfaction with general visual appearance.

Keywords

Glare; Daylight Metrics; Luminance Based Lighting Controls; Discomfort Glare; Occupant Preference; High Dynamic Range