Skip to content

An Evaluation Of Wearable Sensors And Their Placements For Analyzing Construction Worker’s Trunk Posture In Laboratory Conditions.

Lee, Wonil; Seto, Edmund; Lin, Ken-yu; Migliaccio, Giovanni C. (2017). An Evaluation Of Wearable Sensors And Their Placements For Analyzing Construction Worker’s Trunk Posture In Laboratory Conditions. Applied Ergonomics, 65, 424 – 436.

View Publication

Abstract

This study investigates the effect of sensor placement on the analysis of trunk posture for construction activities using two off-the-shelf systems. Experiments were performed using a single-parameter monitoring wearable sensor (SPMWS), the ActiGraph GT9X Link, which was worn at six locations on the body, and a multi-parameter monitoring wearable sensor (MPMWS), the Zephyr BioHarnessTM3, which was worn at two body positions. One healthy male was recruited and conducted 10 experiment sessions to repeat measurements of trunk posture within our study. Measurements of upper-body thoracic bending posture during the lifting and lowering of raised deck materials in a laboratory setting were compared against video-captured observations of posture. The measurements from the two sensors were found to be in agreement during slow-motion symmetric bending activities with a target bending of <= 45. However, for asymmetric bending tasks, when the SPMWS was placed on the chest, its readings were substantially different from those of the MPMWS worn on the chest or under the armpit. (C) 2017 Elsevier Ltd. All rights reserved.

Keywords

Detectors; Construction Workers; Posture; Wearable Technology; Accelerometers; Work-related Injuries; Health; Accelerometer For Inclinometry; Construction Worker; Work-related Musculoskeletal Disorder; Motion Measurement; Position Measurement; Sensor Placement; Upper-body Thoracic Bending Posture Measurements; Trunk Posture Measurements; Zephyr Bioharness 3; Sensor Placement Effect; Construction Worker Trunk Posture Analysis; Wearable Sensor Evaluation; Asymmetric Bending Tasks; Slow-motion Symmetric Bending Activities; Mpmws; Multiparameter Monitoring Wearable Sensor; Actigraph Gt9x Link; Spmws; Single-parameter Monitoring Wearable Sensor; Low-back-pain; Physical-activity Assessment; Risk-factors; Musculoskeletal Disorders; Reliability; Movements; Validity; System; Gt3x+accelerometer

The Impact Of Coworkers’ Safety Violations On An Individual Worker: A Social Contagion Effect Within The Construction Crew

Liang, Huakang; Lin, Ken-yu; Zhang, Shoujian; Su, Yikun. (2018). The Impact Of Coworkers’ Safety Violations On An Individual Worker: A Social Contagion Effect Within The Construction Crew. International Journal Of Environmental Research And Public Health, 15(4).

View Publication

Abstract

This research developed and tested a model of the social contagion effect of coworkers' safety violations on individual workers within construction crews. Both situational and routine safety violations were considered in this model. Empirical data were collected from 345 construction workers in China using a detailed questionnaire. The results showed that both types of safety violations made by coworkers were significantly related to individuals' perceived social support and production pressure. Individuals' attitudinal ambivalence toward safety compliance mediated the relationships between perceived social support and production pressure and both types of individuals' safety violations. However, safety motivation only mediated the effects of perceived social support and production pressure on individuals' situational safety violations. Further, this research supported the differences between situational and routine safety violations. Specifically, we found that individuals were more likely to imitate coworkers' routine safety violations than their situational safety violations. Coworkers' situational safety violations had an indirect effect on individuals' situational safety violations mainly through perceived social support and safety motivation. By contrast, coworkers' routine safety violations had an indirect effect on individuals' routine safety violations mainly through perceived production pressure and attitudinal ambivalence. Finally, the theoretical and practical implications, research limitations, and future directions were discussed.

Keywords

Health-care Settings; Job Demands; Attitudinal Ambivalence; Industry Development; Workplace Safety; Behavior; Climate; Model; Risk; Employee; Social Contagion; Situational Safety Violations; Routine Safety Violations; Social Learning; Social Information Processing

Higher Residential and Employment Densities Are Associated with More Objectively Measured Walking in the Home Neighborhood

Huang, Ruizhu; Moudon, Anne, V; Zhou, Chuan; Saelens, Brian E. (2019). Higher Residential and Employment Densities Are Associated with More Objectively Measured Walking in the Home Neighborhood. Journal Of Transport & Health, 12, 142 – 151.

View Publication

Abstract

Introduction: Understanding where people walk and how the built environment influences walking is a priority in active living research. Most previous studies were limited by self-reported data on walking. In the present study, walking bouts were determined by integrating one week of accelerometry, GPS, and a travel log data among 675 adult participants in the baseline sample of the Travel Assessment and Community study at Seattle, Washington in the United State. Methods: Home neighborhood was defined as being within 0.5 mile of each participants' residence (a 10-min walk), with home neighborhood walking defined as walking bout lines with at least one GPS point within the home neighborhood. Home neighborhood walkability was constructed with seven built environment variables derived from spatially continuous objective values (SmartMaps). Collinearity among neighborhood environment variables was analyzed and variables that were strongly correlated with residential density were excluded in the regression analysis to avoid erroneous estimates. A Zero Inflated Negative Binomial (ZINB) served to estimate associations between home neighborhood environment characteristics and home neighborhood walking frequency. Results: The study found that more than half of participants' walking bouts occurred in their own home neighborhood. Higher residential density and job density were the two neighborhood walkability measures related to higher likelihood and more time walking in the home neighborhood, highest tertile residential density (22.4-62.6 unit/ha) (coefficient= 1.43; 95% CI 1.00-2.05) and highest tertile job density (12.4-272.3 jobs/acre) (coefficient= 1.62; 1.10-2.37). Conclusions: The large proportion of walking that takes place in the home neighborhood highlights the importance of continuing to examine the impact of the home neighborhood environment on walking. Potential interventions to increase walking behavior may benefit from increasing residential and employment density within residential areas.

Keywords

Body-mass Index; Built Environment; Physical-activity; Land Uses; Epidemiology; Selection; Location; Obesity; Travel Assessment And Community; Smartmaps; Neighborhood Environment; Physical Activity; Walking

Curriculum To Prepare AEC Students for BIM-Enabled Globally Distributed Projects

Anderson, Anne; Dossick, Carrie Sturts; Osburn, Laura. (2020). Curriculum To Prepare AEC Students for BIM-Enabled Globally Distributed Projects. International Journal Of Construction Education & Research, 16(4), 270 – 289.

View Publication

Abstract

Globalization and the increasing adoption of BIM and other technologies in the AEC industry have changed the way we prepare graduates for the digital workplace. This paper presents curriculum design where students from five universities worked together to develop design and construction proposals. This paper describes a collaborative project executed in two parts. Part I included the University of Washington in the USA and IIT-Madras in India. Part II included Washington State University in the USA, and National Taiwan University and National Cheng Kung University in Taiwan. Students from these global universities worked on a multi-disciplinary, interdependent project where teams created 3D models and 4D construction simulations. This curriculum addresses ACCE and ABET accreditation requirements regarding multi-disciplinary teams, ethical and professional responsibilities in global, economic, environmental, and societal contexts, and effective teamwork. In this paper, we describe the course design, evaluative criteria, and lessons learned. We found that it was important to emphasize BIM Execution Planning for distributed teams given that communication and coordination can be challenging across time zones and cultural differences. Working through technical challenges of exchanging BIM data, the students learned coordination skills in a globally distributed team environment that simulated real work experiences. [ABSTRACT FROM AUTHOR]; Copyright of International Journal of Construction Education & Research is the property of Routledge and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Keywords

College Curriculum; Project Management; Digital Technology; Work Environment; Globalization; Bim; Building Information Modeling; Digital Literacy; Distributed Teams; Global Collaboration

Human-Centric Lighting Performance of Shading Panels in Architecture: A Benchmarking Study with Lab Scale Physical Models Under Real Skies

Parsaee, Mojtaba; Demers, Claude M. H.; Lalonde, Jean-francois; Potvin, Andre; Inanici, Mehlika; Hebert, Marc. (2020). Human-Centric Lighting Performance of Shading Panels in Architecture: A Benchmarking Study with Lab Scale Physical Models Under Real Skies. Solar Energy, 204, 354 – 368.

View Publication

Abstract

This study investigates shading panels' (SPs) impacts on daylighting features in a lab scale model in terms of parameters representing potential human eyes' biological responses identified as image forming (IF) and non-image forming (NIF). IF responses enable vision and NIF responses regulate internal body clocks known as circadian clocks. Human-centric lighting evaluates photopic units, representing IF responses, and melanopic units representing NIF responses, combined with correlated color temperature (CCT) of light for potential biological effects. SPs' impacts on such parameters of daylighting have not yet been studied. Previous research mostly studied panels' impacts on visual comfort and glare related to IF responses. This research explores the impact of SPs' color, reflectance, orientation, and openness on photopic and melanopic units and CCT of daylighting inside a 1:50 physical scale model of a space. Approximately 40 prototypes of SPs were evaluated. An experimental setup was designed under outdoor daylighting conditions to capture high dynamic range (HDR) images inside the model. HDR images were post processed to calculate and render the distribution of photopic and melanopic units, melanopic/photopic (M/P) ratios and CCTs in the captured viewpoint of the model. Results reveal the behavior of SPs' color, reflectance, orientation, and openness in modifying daylighting parameters related to biological responses. Bluish panels, in particular, increase daylighting melanopic units and CCTs whereas reddish panels increase photopic units and reduce CCTs. The research results were discussed to provide an outline for future developments of panels to adapt daylighting to occupants' IF and NIF responses.

Keywords

Models & Modelmaking; Shades & Shadows; Daylighting; Color Temperature; Benchmarking (management); Ecological Houses; Eye Tracking; Circadian Rhythms; Adaptive Design; Healthy Lighting; High Performance Façade; Photobiology; Responsive Building; Design; Sensitivity; Illuminance; Systems; Spaces; Impact; Glare; High Performance Facade; Reflectance; Scale Models; Biological Effects; Human Performance; Prototypes; Parameter Modification; Lighting; Shading; Eye (anatomy); Color; Parameter Identification; Light Effects; Panels; Mathematical Models; Images; Biological Clocks; Orientation

Safety Climate and Productivity Improvement of Construction Workplaces Through the 6S System: Mixed-Method Analysis of 5S and Safety Integration

Soltaninejad, Mostafa; Fardhosseini, Mohammad Sadra; Kim, Yong Woo. (2021). Safety Climate and Productivity Improvement of Construction Workplaces Through the 6S System: Mixed-Method Analysis of 5S and Safety Integration. International Journal Of Occupational Safety & Ergonomics, 28(3), 1811-1821.

View Publication

Abstract

The purpose of this study is to develop a framework for integrating essential safety practices (visualization, job safety analysis and plan-do-check-act) into 5S steps and validate it. First, 18 interviews with a snowball sample of construction workers, safety representatives, supervisors and site and project managers were conducted. A grounded theory method was utilized to code the interview data. The results revealed that the studied construction companies implement a systematic safety-based methodology to minimize construction work injuries. Second, to validate the proposed framework, a pre-test and post-test study was applied. The case and control groups (26 participants) answered a 6S questionnaire before the 6S system and 1 month after implementation. The results revealed that safety climate and productivity significantly increased for the case group but reduced for the control group during time.

Keywords

5s Method; 6s System; Grounded Theory; Lean Construction; Productivity; Safety Climate; Health; Management; Leadership; Culture; Impact

Visual Openness and Visual Exposure Analysis Models Used as Evaluation Tools During the Urban Design Development Process

Shach-Pinsly, Dalit. (2010). Visual Openness and Visual Exposure Analysis Models Used as Evaluation Tools During the Urban Design Development Process. Journal Of Urbanism, 3(2), 161 – 184.

View Publication

Abstract

This paper reports on the preliminary development of visibility analysis models used as evaluation tools during the urban design development process. This paper proposes a measurable morphological approach that can contribute to the planning and design process as a control and evaluation model. The models are applied to an urban case study that is based on the garden city theory. The complex being evaluated is the Bat-Galim neighborhood, located on the northern shore of Haifa, Israel that was constructed in the middle of the last century. The goal is to try to overcome the problematic results and to suggest other spatial morphological configurations that support better results. Doing so improves the quality of the environment with respect to visual permeability. [ABSTRACT FROM AUTHOR]; Copyright of Journal of Urbanism is the property of Routledge and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Keywords

Urban Planning; Urbanization; Urban Growth; Garden Cities; Haifa (israel); Israel; Comparative Evaluation; Sustainable Urban Environment; Visual Analysis; Visual Exposure; Visual Openness

Quantifying the Impact of Facilitation on Transactive Memory System Formation in Global Virtual Project Networks

Comu, Semra; Iorio, Josh; Taylor, John E.; Dossick, Carrie Sturts. (2013). Quantifying the Impact of Facilitation on Transactive Memory System Formation in Global Virtual Project Networks. Journal Of Construction Engineering & Management, 139(3), 294 – 303.

View Publication

Abstract

Building strong ties between geographically dispersed project participants is crucial to project success. In global project networks, many firms have adopted virtual collaboration tools to address the challenges imposed by temporal and geographical distance. Some researchers have examined the role of facilitators and found that process facilitation can improve collaboration. Research has also shown that facilitators can be drawn into content interactions, which may negatively impact collaboration effectiveness in virtual workspaces. Research to date has not quantified this negative impact. In this study, the formation and maintenance of transactive memory systems (TMS) in two facilitated and two nonfacilitated global virtual project networks were investigated, each executing a 2-month project. Using TMS formation and cohesive subgroup formation as a proxy for performance, quantitative evidence was found that demonstrates a negative impact on collaboration effectiveness when facilitators engage in content facilitation in virtual project networks. This paper shows that this negative impact restricts the establishment of TMSs. These findings have important implications for understanding and designing appropriate facilitator interactions in global virtual project networks. DOI: 10.1061/(ASCE)CO.1943-7862.0000610. (C) 2013 American Society of Civil Engineers.

Keywords

Globalisation; Groupware; International Collaboration; Production Engineering Computing; Project Management; Process Facilitation; Transactive Memory System Formation; Global Virtual Project Network; Virtual Collaboration Tool; Temporal Distance; Geographical Distance; Content Interaction; Virtual Workspace; Tms Cohesive Subgroup Formation; Content Facilitation; Knowledge Transfer; Group Cohesiveness; Group Cohesion; Performance; Teams; Models; Globalization; Networks; Project Networks; Social Network Analysis; Transactive Memory Systems; Virtual Teams

How Do Built-Environment Factors Affect Travel Behavior? A Spatial Analysis at Different Geographic Scales

Hong, Jinhyun; Shen, Qing; Zhang, Lei. (2014). How Do Built-Environment Factors Affect Travel Behavior? A Spatial Analysis at Different Geographic Scales. Transportation, 41(3), 419 – 440.

View Publication

Abstract

Much of the literature shows that a compact city with well-mixed land use tends to produce lower vehicle miles traveled (VMT), and consequently lower energy consumption and less emissions. However, a significant portion of the literature indicates that the built environment only generates some minor-if any-influence on travel behavior. Through the literature review, we identify four major methodological problems that may have resulted in these conflicting conclusions: self-selection, spatial autocorrelation, inter-trip dependency, and geographic scale. Various approaches have been developed to resolve each of these issues separately, but few efforts have been made to reexamine the built environment-travel behavior relationship by considering these methodological issues simultaneously. The objective of this paper is twofold: (1) to better understand the existing methodological gaps, and (2) to reexamine the effects of built-environment factors on transportation by employing a framework that incorporates recently developed methodological approaches. Using the Seattle metropolitan region as our study area, the 2006 Household Activity Survey and the 2005 parcel and building data are used in our analysis. The research employs Bayesian hierarchical models with built-environment factors measured at different geographic scales. Spatial random effects based on a conditional autoregressive specification are incorporated in the hierarchical model framework to account for spatial contiguity among Traffic Analysis Zones. Our findings indicate that land use factors have highly significant effects on VMT even after controlling for travel attitude and spatial autocorrelation. In addition, our analyses suggest that some of these effects may translate into different empirical results depending on geographic scales and tour types.

Keywords

Land-use; Urban Form; Multilevel Models; Physical-activity; Neighborhood; Choice; Impact; Specification; Accessibility; Causation; Built Environment; Travel Behavior; Self-selection; Spatial Autocorrelation; Bayesian Hierarchical Model

PACPIM: New Decision-Support Model of Optimized Portfolio Analysis for Community-Based Photovoltaic Investment

Shakouri, Mahmoud; Lee, Hyun Woo; Choi, Kunhee. (2015). PACPIM: New Decision-Support Model of Optimized Portfolio Analysis for Community-Based Photovoltaic Investment. Applied Energy, 156, 607 – 617.

View Publication

Abstract

Inherent in large-scale photovoltaic (PV) investments is volatility that stems from a unique set of spatial factors, such as shading, building orientation, and roof slope, which can significantly affect both the level of risk and the return on investment. In order to systematically assess and manage the volatility, this study seeks to create a quantitative decision-support model: Portfolio Analysis for Community-based PV Investment Model (PACPIM). Focusing on residential PV systems, PACPIM determines optimized portfolios by applying the Mean Variance Portfolio theory. The model is intended to play an instrumental role in: (1) maximizing the hourly electricity output of PV systems; (2) minimizing the hourly volatility in electricity output; and (3) optimizing the risk-adjusted performance of community-based PV investment. The application and framework of PACPIM were deployed with an actual residential community consisting of 24 houses and their simulated data utilizing PVWatts (R) for estimating hourly electricity production. Results reveal that the optimized portfolios developed by PACPIM (1) increased annual electricity output of PV systems by 4.6%; (2) reduced the volatility in electricity output by 4.3%; and (3) offered the highest risk-adjusted performance among all possible portfolios based on the Sharpe ratios. This study is expected to effectively assist project owners and investors in systematically assessing their community-based PV projects and in developing optimized investment strategies. (C) 2015 Elsevier Ltd. All rights reserved.

Keywords

Photovoltaic Cells; Rate Of Return; Electricity; Dwellings; Electric Utilities; Community-based Investments; Decision-support Model; Mean–variance Portfolio Theory; Residential Photovoltaic Systems; Solar Energy; Decision Support Systems; Investment; Photovoltaic Power Systems; Large-scale Photovoltaic Investments; Spatial Factors; Shading; Building Orientation; Roof Slope; Return On Investment; Quantitative Decision-support Model; Portfolio Analysis For Community-based Pv Investment Model; Pacpim; Residential Pv Systems; Mean-variance Portfolio Theory; Hourly Electricity Output; Hourly Volatility; Risk-adjusted Performance; Hourly Electricity Production Estimation; Community-based Pv Projects; Optimized Investment Strategies; Romanian National Strategy; Renewable Energy; Public-attitudes; Wind Power; Pv Module; Performance; Implementation; Efficiency; Form; Economic Theory; Electricity Generation; Models; Risk; Shade; Solar Collectors