Dannenberg, Andrew L.; Burpee, Heather. (2018). Architecture for Health Is Not Just for Healthcare Architects. Health Environments Research & Design Journal (herd) (sage Publications, Ltd.), 11(2), 8 – 12.
View Publication
Keywords
Building Design & Construction; Public Health; Quality Of Life; Built Environment; Public Spaces
Drewnowski, A.; Arterburn, D.; Zane, J.; Aggarwal, A.; Gupta, S.; Hurvitz, P. M.; Moudon, A., V; Bobb, J.; Cook, A.; Lozano, P.; Rosenberg, D. (2019). The Moving to Health (M2H) Approach to Natural Experiment Research: A Paradigm Shift for Studies on Built Environment and Health. Ssm-population Health, 7.
View Publication
Abstract
Improving the built environment (BE) is viewed as one strategy to improve community diets and health. The present goal is to review the literature on the effects of BE on health, highlight its limitations, and explore the growing use of natural experiments in BE research, such as the advent of new supermarkets, revitalized parks, or new transportation systems. Based on recent studies on movers, a paradigm shift in built-environment health research may be imminent. Following the classic Moving to Opportunity study in the US, the present Moving to Health (M2H) strategy takes advantage of the fact that changing residential location can entail overnight changes in multiple BE variables. The necessary conditions for applying the M2H strategy to Geographic Information Systems (GIS) databases and to large longitudinal cohorts are outlined below. Also outlined are significant limitations of this approach, including the use of electronic medical records in lieu of survey data. The key research question is whether documented changes in BE exposure can be linked to changes in health outcomes in a causal manner. The use of geo-localized clinical information from regional health care systems should permit new insights into the social and environmental determinants of health.
Keywords
Body-mass Index; Neighborhood Food Environment; Residential Property-values; Cardiometabolic Risk-factors; New-york-city; Physical-activity; Obesity Rates; King County; Weight-gain; Land-use; Built Environment (be); Geographic Information Systems (gis); Electronic Medical Records; Natural Experiments; Obesity; Diabetes; Residential Mobility
Tobey, Michael B.; Binder, Robert B.; Chang, Soowon; Yoshida, Takahiro; Yamagata, Yoshiki; Yang, Perry P. J. (2019). Urban Systems Design: A Conceptual Framework for Planning Smart Communities. Smart Cities, 2(4), 522 – 537.
View Publication
Abstract
Urban systems design arises from disparate current planning approaches (urban design, Planning Support Systems, and community engagement), compounded by the reemergence of rational planning methods from new technology (Internet of Things (IoT), metric based analysis, and big data). The proposed methods join social considerations (Human Well-Being), environmental needs (Sustainability), climate change and disaster mitigation (Resilience), and prosperity (Economics) as the four foundational pillars. Urban systems design integrates planning methodologies to systematically tackle urban challenges, using IoT and rational methods, while human beings form the core of all analysis and objectives. Our approach utilizes an iterative three-phase development loop to contextualize, evaluate, plan and design scenarios for the specific needs of communities. An equal emphasis is placed on feedback loops through analysis and design, to achieve the end goal of building smart communities.
Keywords
Urban Design; Planning Support System; Resilience; Sustainability; Economics; Human Factors; Big Data
Lee, Yong-Cheol; Shariatfar, Moeid; Rashidi, Abbas; Lee, Hyun Woo. (2020). Evidence-Driven Sound Detection for Prenotification and Identification Of Construction Safety Hazards and Accidents. Automation In Construction, 113.
View Publication
Abstract
As the construction industry experiences a high rate of casualties and significant economic loss associated with accidents, safety has always been a primary concern. In response, several studies have attempted to develop new approaches and state-of-the-art technology for conducting autonomous safety surveillance of construction work zones such as vision-based monitoring. The current and proposed methods including human inspection, however, are limited to consistent and real-time monitoring and rapid event recognition of construction safety issues. In addition, the health and safety risks inherent in construction projects make it challenging for construction workers to be aware of possible safety risks and hazards according to daily planned work activities. To address the urgent demand of the industry to improve worker safety, this study involves the development of an audio-based event detection system to provide daily safety issues to laborers and through the rapid identification of construction accidents. As an evidence-driven approach, the proposed framework incorporates the occupational injury and illness manual data, consisting of historical construction accident data classified by types of sources and events, into an audio-based safety event detection framework. This evidence-driven framework integrated with a daily project schedule can automatically provide construction workers with prenotifications regarding safety hazards at a pertinent work zone as well as consistently contribute to enhanced construction safety monitoring by audio-based event detection. By using a machine learning algorithm, the framework can clearly categorize the narrowed-down sound training data according to a daily project schedule and dynamically restrict sound classification types in advance. The proposed framework is expected to contribute to an emerging knowledge base for integrating an automated safety surveillance system into occupational accident data, significantly improving the accuracy of audio-based event detection.
Keywords
Construction Projects; Occupational Hazards; Construction Workers; Construction; System Safety; Video Surveillance; Work-related Injuries; Audio-based Accident Recognition; Autonomous Safety Surveillance; Construction Safety; Evidence-driven Sound Event Detection; Accident Prevention; Accidents; Audio Acoustics; Classification (of Information); Construction Industry; Health Hazards; Health Risks; Knowledge Based Systems; Learning Algorithms; Losses; Machine Learning; Monitoring; Motion Compensation; Occupational Diseases; Steel Beams And Girders; Audio-based; Construction Accidents; Construction Work Zones; Historical Construction; Sound Event Detection; State-of-the-art Technology; Vision Based Monitoring; Algorithm; System
Homayouni, Hoda; Dossick, Carrie Sturts; Neff, Gina. (2021). Three Pathways to Highly Energy Efficient Buildings: Assessing Combinations of Teaming and Technology. Journal Of Management In Engineering, 37(2).
View Publication
Abstract
Highly energy efficient (HEE) buildings require a whole-system approach to building design. Scholars have suggested many tools, techniques, and processes to address the cross-disciplinary complexities of such an approach, but how these elements might be best combined to lead to better project outcomes is yet unknown. To address this, we surveyed architects associated with 33 AIA-COTE award-winning projects on the social, organizational, and technological elements of whole-system design (WSD) practices. We then used fuzzy sets-qualitative comparative analysis (fsQCA) to analyze the interdependencies among those elements. We found three distinct pathways for the design and construction of HEE buildings: information-driven, process-driven, or organization-driven. We also found that HEE buildings share some conditions for success, including having shared goals, owners engagement in the design process, and frequent and participatory interorganizational meetings. Our findings can help practitioners strategize and make decisions on incorporating WSD elements associated with their project types. Moreover, these results provide a launchpad for scholars to investigate complementarities among elements facilitating the design and construction process of HEE projects.
Keywords
Buildings (structures); Construction; Design Engineering; Energy Conservation; Fuzzy Set Theory; Innovation Management; Organisational Aspects; Project Management; Team Working; Whole-system Approach; Building Design; Cross-disciplinary Complexities; Social Elements; Organizational Elements; Technological Elements; Whole-system Design Practices; Fuzzy Set; Distinct Pathways; Hee Buildings; Project Types; Construction Process; Hee Projects; Highly Energy Efficient Buildings; Whole-system Design; Energy Efficient Buildings; Building Information Modeling; Integrated Project Teams; Fuzzy Sets-qualitative Comparative Analysis
Ho, Chung; Kim, Yong-woo; Zabinsky, Zelda B. (2022). Prefabrication Supply Chains With Multiple Shops: Optimization For Job Allocation. Automation In Construction, 136.
View Publication
Abstract
Prefabrication or off-site construction is a growing trend contributing to productivity improvements. It motivates specialty contractors and suppliers to operate multiple fabrication shops close to market regions, where a shop can produce and delivery prefabricated components in a timely fashion and at a minimal cost. Few quantitative models are available to assist companies with scheduling and allocation questions. This research utilizes optimization to answer these questions supporting the production planning in prefabrication supply chains. The paper presents an optimization model that seeks minimal cost while considering job demands and shop capacities. Computational results suggest that the model generates a lower-cost production schedule than the early due date (EDD) method. It also indicates that varying due dates cause changes in total cost. Moreover, this research supports decision-makers by analyzing the impacts of changing shop capacities regarding available machines. It provides further insight into construction supply chain management with multiple shops.
Keywords
Supply Chains; Job Shops; Supply Chain Management; Production Scheduling; Production Planning; Warehouses; Construction; Modularization; Optimization; Prefabrication; Scheduling; Off-site Construction; Modular Buildings; Scheduling Model; Precast; Management; Transportation; Performance; Decisions
The Aga Khan Award for Architecture (AKAA) recently announced 20 shortlisted projects for the 2022 Award cycle. The projects will compete for a share of the US$ 1 million prize, one of the largest in architecture. The 20 shortlisted projects were selected by an independent Master Jury from a pool of 463 projects nominated for the 15th Award Cycle (2020-2022). The Aga Khan Award for Architecture was established by His Highness the Aga Khan in 1977 to identify and encourage…
ARPA-E announced $5 million in funding to two universities—the University of Washington and University of California, Davis—working to develop life cycle assessment tools and frameworks associated with transforming buildings into net carbon storage structures. The funding is part of the Harnessing Emissions into Structures Taking Inputs from the Atmosphere (HESTIA) Exploratory Topic. Parametric Open Data for Life Cycle Assessment (POD | LCA) – $3,744,303 The University of Washington’s Carbon Leadership Forum will develop a rigorous and flexible parametric Life Cycle Assessment (LCA)…
Ann Marie Borys, Associate Professor in Architecture recently published a book titled American Unitarian Churches: Architecture of a Democratic Religion. The Unitarian religious tradition was a product of the same eighteenth-century democratic ideals that fueled the American Revolution and informed the founding of the United States. Its liberal humanistic principles influenced institutions such as Harvard University and philosophical movements like Transcendentalism. Yet, its role in the history of American architecture is little known and studied. In American Unitarian Churches, Ann Marie…
In 2021 the College of Built Environments launched the CBE Inspire Fund, designed to support CBE research activities for which a relatively small amount of support can be transformative. The second year of awards have just been announced, supporting five projects across 4 departments within the college as they address topics such as food sovereignty, anti-displacement, affordable housing, and health & wellbeing. This year’s awardees include: Defining the New Diaspora: Where Seattle’s Black Church Congregants Are Moving and Why Rachel…