Skip to content

Planning For The Future Of Urban Biodiversity: A Global Review Of City-scale Initiatives.

Nilon, Charles H.; Aronson, Myla F. J.; Cilliers, Sarel S.; Dobbs, Cynnamon; Frazee, Lauren J.; Goddard, Mark A.; O’Neill, Karen M.; Roberts, Debra; Stander, Emilie K.; Werner, Peter; Winter, Marten; Yocom, Ken P. (2017). Planning For The Future Of Urban Biodiversity: A Global Review Of City-scale Initiatives. Bioscience, 67(4), 331 – 341.

View Publication

Abstract

Cities represent considerable opportunities for forwarding global biodiversity and sustainability goals. We developed key attributes for conserving biodiversity and for ecosystem services that should be included in urban-planning documents and reviewed 135 plans from 40 cities globally. The most common attributes in city plans were goals for habitat conservation, air and water quality, cultural ecosystem services, and ecological connectivity. Few plans included quantitative targets. This lack of measurable targets may render plans unsuccessful for an actionable approach to local biodiversity conservation. Although most cities include both biodiversity and ecosystem services, each city tends to focus on one or the other. Comprehensive planning for biodiversity should include the full range of attributes identified, but few cities do this, and the majority that do are mandated by local, regional, or federal governments to plan specifically for biodiversity conservation. This research provides planning recommendations for protecting urban biodiversity based on ecological knowledge.

Keywords

Sustainability; Urban Planning; Urban Biodiversity; Urban Ecology (biology); Water Quality; Air Quality; Biodiversity Conservation; Ecosystem Services; Governance; Policy Regulation; Green Infrastructure; Climate-change; Human Health; Cities; Opportunities; Metaanalysis; Framework; Richness

Coping on the Inside: Design for Therapeutic Incarceration Interventions – A Case Study

Wagenfeld, Amy; Winterbottom, Daniel. (2021). Coping on the Inside: Design for Therapeutic Incarceration Interventions – A Case Study. Work-a Journal Of Prevention Assessment & Rehabilitation, 68(1), 97 – 106.

View Publication

Abstract

BACKGROUND: Adjusting to incarceration is traumatic. An under-utilized strategy understood to buffer and counteract the negative impacts of incarceration are nature interventions. OBJECTIVE: Outcomes of an interdisciplinary design studio course focused on developing masterplans for a women's prison in the Pacific Northwest (US) are presented. Course objectives included comprehension and application of therapeutic and culturally expressive design principles to increase the benefits of environmental design within a carceral setting; collaboration, developing a deeper, more representative understanding of how design processes can improve the lives of marginalized populations; and enhancing design skills, including at masterplan and schematic scale using an iterative process and reflection. METHODS: A landscape architect, occupational therapist, and architect teaching team, with support from architects and justice specialists facilitated an elective design studio course to redesign the Washington Corrections Center for Women campus. RESULTS: In a ten-week academic quarter, six student design teams created conceptual masterplans for therapeutic outdoor spaces at the Washington Corrections Center for Women. Students presented their plans to prison staff, current and ex-offenders, and architects and landscape architects in practice, and then received positive feedback. CONCLUSION: Despite well-documented need for and value of nature interventions to improve health and wellbeing for everyone regardless of circumstance or situation, the project awaits administrative approval to move forward to installation.

Keywords

Recovery; Exposure; Health; Correctional Institutions; Environmental Justice; Therapeutic Outdoor Environments; Interdisciplinary Academic Design Studio

Small-Scale and Extensive Hydrogeomorphic Modification and Water Redistribution in a Desert City and Implications for Regional Nitrogen Removal

Larson, Elisabeth K.; Grimm, Nancy B. (2012). Small-Scale and Extensive Hydrogeomorphic Modification and Water Redistribution in a Desert City and Implications for Regional Nitrogen Removal. Urban Ecosystems, 15(1), 71 – 85.

View Publication

Abstract

There are numerous examples of small-scale hydrogeomorphic manipulations within urban ecosystems. These modifications are motivated both by a need to handle storm drainage and by a human desire for aquatic ecosystems as places for recreation and aesthetics. In the Phoenix Arizona metropolitan area, two examples of these local modifications are artificial lakes and stormwater retention basins. Although lakes are not a natural feature of Sonoran Desert ecosystems, numerous artificial lakes are evident in the region. Retention basins are a common landscaping practice for preventing damage from rare but potentially large storm events. Here we attempt to quantify the heretofore unknown number and extent of these designed aquatic ecosystems and consider their potential impact on hydrologic landscape connectivity and regional nitrogen (N) removal. For lakes, we found that official GIS layers from local and state agencies had significant misclassifications and omissions. We used two published GIS datasets and state impoundment-permit information to determine the number, areal extent, and water source for artificial lakes. We discovered that there are 908-1,390 lakes in the Phoenix area, with the number varying according to level of aggregation. There are no existing GIS data on retention basins, so we employed drywell-permit data to estimate that there may be 10,000 retention basins in the region. Basic data on N stocks in these ecosystems are discussed within the context of the regional N budget. Accurate data on the extent and distribution of these designed ecosystems will be vital for water-resources planning and stormwater management.

Keywords

Urban; Urbanization; Retention; Phoenix

Spatial Relationships between Urban Structures and Air Pollution in Korea

Jung, Meen Chel; Park, Jaewoo; Kim, Sunghwan. (2019). Spatial Relationships between Urban Structures and Air Pollution in Korea. Sustainability, 11(2).

View Publication

Abstract

Urban structures facilitate human activities and interactions but are also a main source of air pollutants; hence, investigating the relationship between urban structures and air pollution is crucial. The lack of an acceptable general model poses significant challenges to investigations on the underlying mechanisms, and this gap fuels our motivation to analyze the relationships between urban structures and the emissions of four air pollutants, including nitrogen oxides, sulfur oxides, and two types of particulate matter, in Korea. We first conduct exploratory data analysis to detect the global and local spatial dependencies of air pollutants and apply Bayesian spatial regression models to examine the spatial relationship between each air pollutant and urban structure covariates. In particular, we use population, commercial area, industrial area, park area, road length, total land surface, and gross regional domestic product per person as spatial covariates of interest. Except for park area and road length, most covariates have significant positive relationships with air pollutants ranging from 0 to 1, which indicates that urbanization does not result in a one-to-one negative influence on air pollution. Findings suggest that the government should consider the degree of urban structures and air pollutants by region to achieve sustainable development.

Keywords

Land-use Regression; Particulate Matter Concentrations; Nitrogen-dioxide; Temporal Variations; Smart City; Quality; Health; Pm10; Fine; Pollutants; Urban Structure; Air Pollution; Moran's I; Bayesian Spatial Model; Motivation; Population; Urbanization; Nitrogen Oxides; Urban Structures; Emissions; Regression Analysis; Regression Models; Sulfur; Spatial Dependencies; Environmental Impact; Outdoor Air Quality; Metropolitan Areas; Economic Growth; Photochemicals; Industrial Areas; Urban Areas; Industrial Plant Emissions; Particulate Emissions; Particulate Matter; Data Analysis; Bayesian Analysis; Sustainable Development; Sulfur Oxides; Regions; Mathematical Models; Cities; China

Comparative Life Cycle Assessment of Mass Timber and Concrete Residential Buildings: A Case Study in China

Chen, Cindy X.; Pierobon, Francesca; Jones, Susan; Maples, Ian; Gong, Yingchun; Ganguly, Indroneil. (2022). Comparative Life Cycle Assessment of Mass Timber and Concrete Residential Buildings: A Case Study in China. Sustainability, 14(1).

View Publication

Abstract

As the population continues to grow in China's urban settings, the building sector contributes to increasing levels of greenhouse gas (GHG) emissions. Concrete and steel are the two most common construction materials used in China and account for 60% of the carbon emissions among all building components. Mass timber is recognized as an alternative building material to concrete and steel, characterized by better environmental performance and unique structural features. Nonetheless, research associated with mass timber buildings is still lacking in China. Quantifying the emission mitigation potentials of using mass timber in new buildings can help accelerate associated policy development and provide valuable references for developing more sustainable constructions in China. This study used a life cycle assessment (LCA) approach to compare the environmental impacts of a baseline concrete building and a functionally equivalent timber building that uses cross-laminated timber as the primary material. A cradle-to-gate LCA model was developed based on onsite interviews and surveys collected in China, existing publications, and geography-specific life cycle inventory data. The results show that the timber building achieved a 25% reduction in global warming potential compared to its concrete counterpart. The environmental performance of timber buildings can be further improved through local sourcing, enhanced logistics, and manufacturing optimizations.

Keywords

Mass Timber; Embodied Carbon; Climate Change; Carbon Reduction; Building Footprint; Built Environment; Forest Products; Life Cycle Analysis; Environmental Impacts; Wood Laminates; Geography; Concrete; Flooring; Manufacturing; Global Warming; Concrete Construction; Construction Materials; Emissions Trading; Greenhouse Gases; Residential Areas; Energy Consumption; Life Cycle Assessment; Greenhouse Effect; Life Cycles; Construction Industry; Logistics; Floor Coverings; Urbanization; Timber; Urban Environments; Building Components; Emissions; Residential Buildings; Carbon Footprint; Urban Areas; Environmental Impact; Building Construction; Case Studies; Wood Products; Mitigation; Buildings; Timber (structural); United States--us; China

The San Francisco Peninsula’s Great Estates: Part I

Streatfield, David C. (2012). The San Francisco Peninsula’s Great Estates: Part I. Eden, 15(1), 1 – 14.

Abstract

The article presents a historical background of several great estates in San Francisco Peninsula in California known for their unique landscaping and special garden designs in the late 19th and early 20th centuries. It discusses the climate and settlement styles in the area and offers information on the earliest estates such as the El Cerrito created by merchant William Davis Merry Howard and the notable mid-Victorian estates such as the Millbrae estate of banker Darius Ogden Mills.

Keywords

Garden Design; Landscape Design; Landscape Gardening; San Francisco Peninsula (calif.); California

Environmental Benefits of Using Hybrid CLT Structure in Midrise Non-Residential Construction: An LCA Based Comparative Case Study in the U.S. Pacific Northwest

Pierobon, Francesca; Huang, Monica; Simonen, Kathrina; Ganguly, Indroneil. (2019). Environmental Benefits of Using Hybrid CLT Structure in Midrise Non-Residential Construction: An LCA Based Comparative Case Study in the U.S. Pacific Northwest. Journal Of Building Engineering, 26.

View Publication

Abstract

In this study, the cradle-to-gate environmental impact of a hybrid, mid-rise, cross-laminated timber (CLT) commercial building is evaluated and compared to that of a reinforced concrete building with similar functional characteristics. This study evaluates the embodied emissions and energy associated with building materials, manufacturing, and construction. Two alternative designs are considered for fire protection in the hybrid CLT building: 1) a 'fireproofing design', where gypsum wallboard is applied to the structural wood; and 2) a 'charring design', where two extra layers of CLT are added to the panel. The life cycle environmental impacts are assessed using TRACI 2.1 and the total primary energy is evaluated using the Cumulative Energy Demand impact method. Results show that an average of 26.5% reduction in the global warming potential is achieved in the hybrid CLT building compared to the concrete building, excluding biogenic carbon emissions. Except ozone depletion, where the difference in impact between scenarios is < 1%, replacing fireproofing with charring is beneficial for all impact categories. The embodied energy assessment of the building types reveals that, on average, the total primary energy in the hybrid CLT buildings and concrete building are similar. However, the non-renewable energy (fossil-based) use in the hybrid CLT building is 8% lower compared to that of the concrete building. As compared to the concrete building, additional 1,556 tCO(2)(e) and 2,567 tCO(2e) are stored in the wood components of the building (long-term storage of biogenic carbon) in the scenario with fireproofing and with charring, respectively.

Keywords

Wood; Concrete; Energy; Buildings; Impacts; Cross-laminated Timber; U.s. Pacific Northwest; Life Cycle Assessment; Cumulative Energy Demand; Biogenic Carbon; Carbon Storage

Detecting Patterns of Vertebrate Biodiversity Across the Multidimensional Urban Landscape

Alberti, Marina; Wang, Tianzhe. (2022). Detecting Patterns of Vertebrate Biodiversity Across the Multidimensional Urban Landscape. Ecology Letters, 25(4), 1027 – 1045.

View Publication

Abstract

Explicit characterisation of the complexity of urban landscapes is critical for understanding patterns of biodiversity and for detecting the underlying social and ecological processes that shape them. Urban environments exhibit variable heterogeneity and connectivity, influenced by different historical contingencies, that affect community assembly across scales. The multidimensional nature of urban disturbance and co-occurrence of multiple stressors can cause synergistic effects leading to nonlinear responses in populations and communities. Yet, current research design of urban ecology and evolutionary studies typically relies on simple representation of the parameter space that can be observed. Sampling approaches apply simple urban gradients such as linear transects in space or comparisons of urban sites across the urban mosaic accounting for a few variables. This rarely considers multiple dimensions and scales of biodiversity, and proves to be inadequate to explain observed patterns. We apply a multidimensional approach that integrates distinctive social, ecological and built characteristics of urban landscapes, representing variations along dimensions of heterogeneity, connectivity and historical contingency. Measuring species richness and beta diversity across 100 US metropolitan areas at the city and 1-km scales, we show that distinctive signatures of urban biodiversity can result from interactions between socioecological heterogeneity and connectivity, mediated by historical contingency.

Keywords

Urban Biodiversity; Biodiversity; Species Diversity; Urban Planning; Landscape Ecology; Metropolitan Areas; Beta Diversity; Multidimensional Landscape; Scaling; Spatial Scales; Species Richness; Urban Gradients; Vertebrate Species; Ecological-systems; Diversity; Urbanization; Conservation; Ecosystems; Heterogeneity; Connectivity; Population; Complexity; Evolution; Urban Environments; Synergistic Effect; Nonlinear Response; Research Design; Contingency; Urban Areas; Vertebrates

The San Francisco Peninsula’s Great Estates: Part II

Streatfield, David C. (2012). The San Francisco Peninsula’s Great Estates: Part II. Eden, 15(2), 1 – 17.

Abstract

This article discusses the landscaping of American country estates built in late 19th century in San Francisco Peninsula. These estates are mentioned to have been influenced by the growing popularity of gardening in Europe. Andrew Jackson, America's first landscape architecture practitioner, is cited for promoting garden styles derived from English precedents. Some of the noteworthy estates built during the first three decades of 20th century are also described like New Place and Green Gables.

Keywords

Landscape Gardening; Country Homes; Gardening; Landscape Architecture; Europe; Jackson, Andrew

Site Resource Inventories – A Missing Link in the Circular City’s Information Flow

Baganz, Gösta; Proksch, Gundula; Kloas, Werner; Wolf Lorleberg; Baganz, Daniela; Staaks, Georg; Lohrberg, Frank. (2020). Site Resource Inventories – A Missing Link in the Circular City’s Information Flow. Advances In Geosciences, 54, 23-32.

View Publication

Abstract

A circular city builds upon the principles of circular economy, which key concepts of reduce, reuse, recycle, and recover lead to a coupling of resources: products and by-products of one production process become the input of another one, often in local vicinity. However, sources, types and available quantities of underutilised resources in cities are currently not well documented. Therefore, there is a missing link in the information flow of the circular city between potential users and site-specific data. To close this gap, this study introduces the concept of a site resource inventory in conjunction with a new information model that can manage the data needed for advancing the circular city. A core taxonomy of terms is established as the foundation for the information model: the circular economy is defined as a network of circular economy entities which are regarded as black boxes and connected by their material and energy inputs and outputs. This study proposes a site resource inventory, which is a collection of infrastructural and building-specific parameters that assess the suitability of urban sites for a specific circular economy entity. An information model is developed to manage the data that allows the entities to effectively organise the allocation and use of resources within the circular city and its material and energy flows. The application of this information model was demonstrated by comparing the demand and availability of required alternative resources (e.g. greywater) at a hypothetical site comprising a commercial aquaponic facility (synergistic coupling of fish and vegetables production) and a residential building. For the implementation of the information model a proposal is made which uses the publicly available geodata infrastructure of OpenStreetMap and adopts its tag system to operationalise the integration of circular economy data by introducing new tags. A site resource inventory has the potential to bring together information needs and it is thus intended to support companies when making their business location decisions or to support local authorities in the planning process.

Keywords

Digital Mapping; Economics; By Products; Aquaponics; Economic Conditions; Fish; Spatial Data; Consumers; Food; Infrastructure; Energy Flow; Greywater; Information Flow; Biogas; Consumption; Residential Buildings; Taxonomy; Data; Resources; Sustainable Development; Urban Areas; Cities; Coupling