Skip to content

Beyond the Bus Stop: Where Transit Users Walk

Eisenberg-Guyot, Jerzy; Moudon, Anne V.; Hurvitz, Philip M.; Mooney, Stephen J.; Whitlock, Kathryn B.; Saelens, Brian E. (2019). Beyond the Bus Stop: Where Transit Users Walk. Journal Of Transport & Health, 14.

View Publication

Abstract

Objectives: Extending the health benefits of public-transit investment requires understanding how transit use affects pedestrian activity, including pedestrian activity not directly temporally or spatially related to transit use. In this study, we identified where transit users walked on transit days compared with non-transit days within and beyond 400 m and 800 m buffers surrounding their home and work addresses. Methods: We used data collected from 2008 to 2013 in King County, Washington, from 221 non-physically-disabled adult transit users, who were equipped with an accelerometer, global positioning system (GPS), and travel diary. We assigned walking activity to the following buffer locations: less than and at least 400 m or 800 m from home, work, or home/work (the home and work buffers comprised the latter buffer). We used Poisson generalized estimating equations to estimate differences in minutes per day of total walking and minutes per day of non-transit-related walking on transit days compared with non-transit days in each location. Results: We found that durations of total walking and non-transit-related walking were greater on transit days than on non-transit days in all locations studied. When considering the home neighborhood in isolation, most of the greater duration of walking occurred beyond the home neighborhood at both 400 m and 800 m; results were similar when considering the work neighborhood in isolation. When considering the neighborhoods jointly (i.e., by using the home/work buffer), at 400 m, most of the greater duration of walking occurred beyond the home/work neighborhood. However, at 800 m, most of the greater duration of walking occurred within the home/work neighborhood. Conclusions: Transit days were associated with greater durations of total walking and non-transit related walking within and beyond the home and work neighborhoods. Accordingly, research, design, and policy strategies focused on transit use and pedestrian activity should consider locations outside the home and work neighborhoods, in addition to locations within them.

Keywords

Physical-activity; Public-transit; Accelerometer Data; Combining Gps; United-states; Travel; Transportation; Health; Time; Neighborhood

Residential Neighborhood Features Associated with Objectively Measured Walking Near Home: Revisiting Walkability Using the Automatic Context Measurement Tool (ACMT)

Mooney, Stephen J.; Hurvitz, Philip M.; Moudon, Anne Vernez; Zhou, Chuan; Dalmat, Ronit; Saelens, Brian E. (2020). Residential Neighborhood Features Associated with Objectively Measured Walking Near Home: Revisiting Walkability Using the Automatic Context Measurement Tool (ACMT). Health & Place, 63.

View Publication

Abstract

Many distinct characteristics of the social, natural, and built neighborhood environment have been included in walkability measures, and it is unclear which measures best describe the features of a place that support walking. We developed the Automatic Context Measurement Tool, which measures neighborhood environment characteristics from public data for any point location in the United States. We explored these characteristics in home neighborhood environments in relation to walking identified from integrated GPS, accelerometer, and travel log data from 681 residents of King Country, WA. Of 146 neighborhood characteristics, 92 (63%) were associated with walking bout counts after adjustment for individual characteristics and correction for false discovery. The strongest built environment predictor of walking bout count was housing unit count. Models using data-driven and a priori defined walkability measures exhibited similar fit statistics. Walkability measures consisting of different neighborhood characteristic measurements may capture the same underlying variation in neighborhood conditions.

Keywords

Built-environment; Physical-activity; Transit; Density; Obesity; Weight; Time; Gps; American Community Survey; Epa Walkability Index; Neighborhood Environment-wide Association; Study; Walking Bouts

Population Mobility and the Transmission Risk of the Covid-19 in Wuhan, China

Luo, Minghai; Qin, Sixian; Tan, Bo; Cai, Mingming; Yue, Yufeng; Xiong, Qiangqiang. (2021). Population Mobility and the Transmission Risk of the Covid-19 in Wuhan, China. Isprs International Journal Of Geo-information, 10(6).

View Publication

Abstract

At the beginning of 2020, a suddenly appearing novel coronavirus (COVID-19) rapidly spread around the world. The outbreak of the COVID-19 pandemic in China occurred during the Spring Festival when a large number of migrants traveled between cities, which greatly increased the infection risk of COVID-19 across the country. Financially supported by the Wuhan government, and based on cellphone signaling data from Unicom (a mobile phone carrier) and Baidu location-based data, this paper analyzed the effects that city dwellers, non-commuters, commuters, and people seeking medical services had on the transmission risk of COVID-19 in the early days of the pandemic in Wuhan. The paper also evaluated the effects of the city lockdown policy on the spread of the pandemic outside and inside Wuhan. The results show that although the daily business activities in the South China Seafood Wholesale Market and nearby commuters' travel behaviors concentrated in the Hankou area, a certain proportion of these people were distributed in the Wuchang and Hanyang areas. The areas with relatively high infection risks of COVID-19 were scattered across Wuhan during the early outbreak of the pandemic. The lockdown in Wuhan closed the passageways of external transport at the very beginning, largely decreasing migrant population and effectively preventing the spread of the pandemic to the outside. However, the Wuhan lockdown had little effect on preventing the spread of the pandemic within Wuhan at that time. During this period, a large amount of patients who went to hospitals for medical services were exposed to a high risk of cross-infection without precaution awareness. The pandemic kept dispersing in three towns until the improvement of the capacity of medical treatment, the management of closed communities, the national support to Wuhan, and the implementation of a series of emergency responses at the same time. The findings in this paper reveal the spatiotemporal features of the dispersal of infection risk of COVID-19 and the effects of the prevention and control measures during the early days of the pandemic. The findings were adopted by the Wuhan government to make corresponding policies and could also provide supports to the control of the pandemic in the other regions and countries.

Keywords

Covid-19; Covid-19 Pandemic; Sars-cov-2; Seafood Markets; Pandemics; Cell Phones; City Dwellers; Wuhan (china); Big Data; Novel Coronavirus; Population Mobility; Risk Analysis; Zika Virus; Diseases; Africa; Impact; Ebola; Spain; Passageways; Smartphones; Investigations; Disease Control; Emergency Response; Health Services; Viral Diseases; Policies; Outbreaks; Emergency Preparedness; Risk; Seafood; Coronaviruses; Medical Treatment; Transmission; Commuting; Dispersion; Dispersal; Infections; Cross-infection; Epidemics; Health Risks; Disease Transmission; China

Carbon Consequences of Land Cover Change and Expansion of Urban Lands: A Case Study in the Seattle Metropolitan Region

Hutyra, Lucy R.; Yoon, Byungman; Hepinstall-Cymerman, Jeffrey; Alberti, Marina. (2011). Carbon Consequences of Land Cover Change and Expansion of Urban Lands: A Case Study in the Seattle Metropolitan Region. Landscape And Urban Planning, 103(1), 83 – 93.

View Publication

Abstract

Understanding the role humans play in modifying ecosystems through changing land cover is central to addressing our current and emerging environmental challenges. In particular, the consequences of urban growth and land cover change on terrestrial carbon budgets is a growing issue for our rapidly urbanizing planet. Using the lowland Seattle Statistical Metropolitan Area (MSA) region as a case study, this paper explores the consequences of the past land cover changes on vegetative carbon stocks with a combination of direct field measurements and a time series of remote sensing data. Between 1986 and 2007, the amount of urban land cover within the lowland Seattle MSA more than doubled, from 1316 km(2) to 2798 km(2), respectively. Virtually all of the urban expansion was at the expense of forests with the forested area declining from 4472 km(2) in 1986 to 2878 km(2) in 2007. The annual mean rate of urban land cover expansion was 1 +/- 0.6% year(-1). We estimate that the impact of these regional land cover changes on aboveground carbon stocks was an average loss of 1.2 Mg C ha(-1) yr(-1) in vegetative carbon stocks. These carbon losses from urban expansion correspond to nearly 15% of the lowland regional fossil fuel emissions making it an important, albeit typically overlooked, term in regional carbon emissions budgets. As we plan for future urban growth and strive for more ecologically sustainable cities, it is critical that we understand the past patterns and consequences of urban development to inform future land development and conservation strategies. (C) 2011 Elsevier B.V. All rights reserved.

Keywords

Sprawl; Growth; Carbon Cycle; Emissions; Land Cover; Urbanization; Seattle; Vegetation; Carbon; Carbon Sinks; Case Studies; Cities; Ecosystems; Forests; Fossil Fuels; Humans; Land Use; Planning; Remote Sensing; Time Series Analysis

Walking Objectively Measured: Classifying Accelerometer Data with GPS and Travel Diaries

Kang, Bumjoon; Moudon, Anne V.; Hurvitz, Philip M.; Reichley, Lucas; Saelens, Brian E. (2013). Walking Objectively Measured: Classifying Accelerometer Data with GPS and Travel Diaries. Medicine & Science In Sports & Exercise, 45(7), 1419 – 1428.

View Publication

Abstract

Purpose: This study developed and tested an algorithm to classify accelerometer data as walking or nonwalking using either GPS or travel diary data within a large sample of adults under free-living conditions. Methods: Participants wore an accelerometer and a GPS unit and concurrently completed a travel diary for seven consecutive days. Physical activity (PA) bouts were identified using accelerometry count sequences. PA bouts were then classified as walking or nonwalking based on a decision-tree algorithm consisting of seven classification scenarios. Algorithm reliability was examined relative to two independent analysts' classification of a 100-bout verification sample. The algorithm was then applied to the entire set of PA bouts. Results: The 706 participants' (mean age = 51 yr, 62% female, 80% non-Hispanic white, 70% college graduate or higher) yielded 4702 person-days of data and had a total of 13,971 PA bouts. The algorithm showed a mean agreement of 95% with the independent analysts. It classified PA into 8170 walking bouts (58.5 %) and 5337 nonwalking bouts (38.2%); 464 bouts (3.3%) were not classified for lack of GPS and diary data. Nearly 70% of the walking bouts and 68% of the nonwalking bouts were classified using only the objective accelerometer and GPS data. Travel diary data helped classify 30% of all bouts with no GPS data. The mean + SD duration of PA bouts classified as walking was 15.2 + 12.9 min. On average, participants had 1.7 walking bouts and 25.4 total walking minutes per day. Conclusions: GPS and travel diary information can be helpful in classifying most accelerometer-derived PA bouts into walking or nonwalking behavior.

Keywords

Walking; Algorithms; Decision Trees; Geographic Information Systems; Research Funding; Travel; Accelerometry; Diary (literary Form); Descriptive Statistics; Algorithm; Classification; Physical Activity; Walk Trip; Global Positioning Systems; Physical-activity; Environment; Behaviors; Validity; Location

Split-Match-Aggregate (SMA) Algorithm: Integrating Sidewalk Data with Transportation Network Data in GIS

Kang, Bumjoon; Scully, Jason Y.; Stewart, Orion; Hurvitz, Philip M.; Moudon, Anne V. (2015). Split-Match-Aggregate (SMA) Algorithm: Integrating Sidewalk Data with Transportation Network Data in GIS. International Journal Of Geographical Information Science, 29(3), 440 – 453.

View Publication

Abstract

Sidewalk geodata are essential to understand walking behavior. However, such geodata are scarce, only available at the local jurisdiction and not at the regional level. If they exist, the data are stored in geometric representational formats without network characteristics such as sidewalk connectivity and completeness. This article presents the Split-Match-Aggregate (SMA) algorithm, which automatically conflates sidewalk information from secondary geometric sidewalk data to existing street network data. The algorithm uses three parameters to determine geometric relationships between sidewalk and street segments: the distance between streets and sidewalk segments; the angle between sidewalk and street segments; and the difference between the lengths of matched sidewalk and street segments. The SMA algorithm was applied in urban King County, WA, to 13 jurisdictions' secondary sidewalk geodata. Parameter values were determined based on agreement rates between results obtained from 72 pre-specified parameter combinations and those of a trained geographic information systems (GIS) analyst using a randomly selected 5% of the 79,928 street segments as a parameter-development sample. The algorithm performed best when the distances between sidewalk and street segments were 12m or less, their angles were 25 degrees or less, and the tolerance was set to 18m, showing an excellent agreement rate of 96.5%. The SMA algorithm was applied to classify sidewalks in the entire study area and it successfully updated sidewalk coverage information on the existing regional-level street network data. The algorithm can be applied for conflating attributes between associated, but geometrically misaligned line data sets in GIS.

Keywords

Geodatabases; Sidewalks; Algorithms; Pedestrians; Digital Mapping; Algorithm; Gis; Pedestrian Network Data; Polyline Conflation; Sidewalk; Built Environment; Physical-activity; Mode Choice; Urban Form; Land-use; Travel; Generation; Walking

Physiological Cost Of Concrete Construction Activities

Lee, Wonil; Migliaccio, Giovanni Ciro. (2016). Physiological Cost Of Concrete Construction Activities. Construction Innovation, 16(3), 281 – 306.

View Publication

Abstract

Purpose - The purpose of this paper was to investigate the physiological cost of concrete construction activities. Design/methodology/approach - Five concrete construction workers were recruited. The workers' three-week heart rate (HR) data were collected in summer and autumn. In this paper, several HR indexes were used to investigate the physiological cost of work in concrete construction trades, including average working HR, relative HR and ratio of working HR to resting HR. Findings - This paper measures how absolute and relative HRs vary throughout a workday and how working HR compares to resting HR for individual workers. Research limitations/implications - Field observations are usually extremely difficult as researchers need to overcome a number of barriers, including employers' resistance to perceived additional liabilities, employees' fear that their level of activity will be reported to managers and many other practical and technical difficulties. As these challenges increase exponentially with the number of employers, subjects and sites, this study was limited to a small number of subjects all working for the same employer on the same jobsite. Still, challenges are often unpredictable and lessons learned from this study are expected to guide both our and other researchers' continuation of this work. Originality/value - The time effect on the physiological cost of work has not been considered in previous studies. Thus, this study is noteworthy owing to the depth of the data collected rather than the breadth of the data.

Keywords

Concrete; Construction Industry; Costing; Human Resource Management; Occupational Health; Personnel; Physiology; Physiological Cost; Concrete Construction Activity; Construction Workers; Summer; Autumn; Construction Trade; Working Heart Rate; Relative Heart Rate; Resting Heart Rate; Employee Fear; Jobsite; Heart-rate Strain; Stress; Work; Risk; Management; Fusion; Model; Index; Biosensing And Environmental Sensing; Occupational Safety And Health; Threshold Limit Value; Work Physiology

What Determines Rail Transit Passenger Volume? Implications for Transit Oriented Development Planning

Pan, Haixiao; Li, Jing; Shen, Qing; Shi, Cheng. (2017). What Determines Rail Transit Passenger Volume? Implications for Transit Oriented Development Planning. Transportation Research: Part D, 57, 52 – 63.

View Publication

Abstract

Transit oriented development (TOD) has been an important topic for urban transportation planning research and practice. This paper is aimed at empirically examining the effect of rail transit station-based TOD on daily station passenger volume. Using integrated circuit (IC) card data on metro passenger volumes and cellular signaling data on the spatial distribution of human activities in Shanghai, the research identifies variations in ridership among rail transit stations. Then, regression analysis is performed using passenger volume in each station as the dependent variable. Explanatory variables include station area employment and population, residents' commuting distances, metro network accessibility, status as interchange station, and coupling with commercial activity centers. The main findings are: (1) Passenger volume is positively associated with employment density and residents' commuting distance around station; (2) stations with earlier opening dates and serving as transfer nodes tend to have positive association with passenger volumes; (3) metro stations better integrated with nearby commercial development tend to have larger passenger volumes. Several implications are drawn for TOD planning: (1) TOD planning should be integrated with rail transit network planning; (2) location of metro stations should be coupled with commercial development; (3) high employment densities should be especially encouraged as a key TOD feature; and (4) interchange stations should be more strategically positioned in the planning for rail transit network.

Keywords

Railroad Passenger Traffic; Transportation; Public Transit; Volume Measurements; Smart Cards; Mathematical Models; Accessibility; Density; Rail Transit Passenger Volume; Spatial Coupling Effect; Tod; Land-use; Built Environment; Travel-demand; Mode Choice; Impacts; Distance

Intersections and Non-Intersections: A Protocol for Identifying Pedestrian Crash Risk Locations in GIS

Kang, Mingyu; Moudon, Anne Vernez; Kim, Haena; Boyle, Linda Ng. (2019). Intersections and Non-Intersections: A Protocol for Identifying Pedestrian Crash Risk Locations in GIS. International Journal Of Environmental Research And Public Health, 16(19).

View Publication

Abstract

Intersection and non-intersection locations are commonly used as spatial units of analysis for modeling pedestrian crashes. While both location types have been previously studied, comparing results is difficult given the different data and methods used to identify crash-risk locations. In this study, a systematic and replicable protocol was developed in GIS (Geographic Information System) to create a consistent spatial unit of analysis for use in pedestrian crash modelling. Four publicly accessible datasets were used to identify unique intersection and non-intersection locations: Roadway intersection points, roadway lanes, legal speed limits, and pedestrian crash records. Two algorithms were developed and tested using five search radii (ranging from 20 to 100 m) to assess the protocol reliability. The algorithms, which were designed to identify crash-risk locations at intersection and non-intersection areas detected 87.2% of the pedestrian crash locations (r: 20 m). Agreement rates between algorithm results and the crash data were 94.1% for intersection and 98.0% for non-intersection locations, respectively. The buffer size of 20 m generally showed the highest performance in the analyses. The present protocol offered an efficient and reliable method to create spatial analysis units for pedestrian crash modeling. It provided researchers a cost-effective method to identify unique intersection and non-intersection locations. Additional search radii should be tested in future studies to refine the capture of crash-risk locations.

Keywords

Traffic Crash; Walking; Collisions; Accidents; Models; Pedestrian Safety; Spatial Autocorrelation; Algorithm

Motorcycle Taxi Programme Increases Safe Riding Behaviours Among Its Drivers In Kampala, Uganda

Muni, Kennedy; Kobusingye, Olive; Mock, Charles; Hughes, James P.; Hurvitz, Philip M.; Guthrie, Brandon. (2020). Motorcycle Taxi Programme Increases Safe Riding Behaviours Among Its Drivers In Kampala, Uganda. Injury Prevention, 26(1), 5 – 11.

View Publication

Abstract

Background SafeBoda is a motorcycle taxi company that provides road safety training and helmets to its drivers in Kampala, Uganda. We sought to determine whether SafeBoda drivers are more likely to engage in safe riding behaviours than regular drivers (motorcycle taxi drivers not part of SafeBoda). Methods We measured riding behaviours in SafeBoda and regular drivers through: (1) computer-assisted personal interview (CAPI), where 400 drivers were asked about their riding behaviours (eg, helmet and mobile phone use) and (2) roadside observation, where riding behaviours were observed in 3000 boda-boda drivers and their passengers along major roads in Kampala. Results Across the two cross-sectional studies, a higher proportion of SafeBoda drivers than regular drivers engaged in safe riding behaviours. For instance, helmet use among SafeBoda compared with regular drivers was 21% points higher (95% CI 0.15 to 0.27; p<0.001) based on the CAPI and 45% points higher (95% CI 0.43 to 0.47; p<0.001) based on roadside observation. Furthermore, compared with regular drivers, SafeBoda drivers were more likely to report having a driver's license (66.3% vs 33.5 %; p<0.001) and a reflective jacket (99.5% vs 50.5 %; p<0.001) and were less likely to report driving towards oncoming traffic (4% vs 45.7 %; p<0.001) in the past 30 days. Conclusion The SafeBoda programme is associated with increased safe riding behaviours among motorcycle taxi drivers in Kampala. Therefore, the promotion and expansion of such programmes may lead to a reduction in morbidity and mortality due to road injuries.

Keywords

Multiple-imputation; Helmet Use; Knowledge; Injuries; Riders