Liu, Chao; Shen, Qing. (2011). An Empirical Analysis of the Influence of Urban Form on Household Travel and Energy Consumption. Computers, Environment & Urban Systems, 35(5), 347 – 357.
View Publication
Abstract
Using the 2001 National Household Travel Survey (NHTS) data, this paper empirically examines the effects of urban land use characteristics on household travel and transportation energy consumption in the Baltimore metropolitan area. The results of regression analysis show that different built environment measures lead to substantially different findings regarding the importance of urban form in influencing travel behavior. Among the built environment variables used in the analysis, accessibility provides much more explanatory power than density, design and diversity measures. Moreover, this study explores approaches to modeling the connection between urban form and household transportation energy consumption. Applying Structural Equation Models (SEMs), we found that urban form does not have a direct effect either on VMT or on vehicle energy consumption. The indirect effect, however, is significant and negative, which suggests that urban form affects household travel and energy consumption through other channels. In addition, household socio-economic characteristics, such as gender and number of vehicles, and vehicle characteristics also show significant relationships between VMT and energy consumption. This empirical effort helps us understand the major data and methodology challenges. (C) 2011 Elsevier Ltd. All rights reserved.
Keywords
Urban Planning; Households; Travel; Energy Consumption; Empirical Research; Transportation; Metropolitan Areas; Climate Change; National Household Travel Survey (nhts); Usage; Environment; Behavior; Holdings; Impact
Maliszewski, Paul; Larson, Elisabeth; Perrings, Charles. (2013). Valuing the Reliability of the Electrical Power Infrastructure: A Two-Stage Hedonic Approach. Urban Studies, 50(1), 72 – 87.
View Publication
Abstract
The reliability of electrical power supply is amongst the conditions that inform house purchase decisions in all urban areas. Reliability depends in part on the conditions of the power generation and distribution infrastructures involved, and in part on environmental conditions. Its value to homeowners may be capitalised into the value of the house. In this paper, a hedonic pricing approach is used to estimate the capitalised value of the reliability offered by distribution infrastructures and the environmental conditions with which they interact in Phoenix, Arizona. A first stage estimates the impact of infrastructure and environmental conditions on reliability. In a second stage, the capitalised value of reliability from the marginal willingness to pay for reliability revealed by house purchase decisions is estimated and used to infer the value of both infrastructural characteristics and environmental conditions.
Keywords
Willingness-to-pay; Residential Property-values; Economic Valuation; Choice Experiment; Urban Wetlands; Air-quality; Benefits; Identifiability; Specification; Determinants
Quistberg, D. Alex; Howard, Eric J.; Ebel, Beth E.; Moudon, Anne V.; Saelens, Brian E.; Hurvitz, Philip M.; Curtin, James E.; Rivara, Frederick P. (2015). Multilevel Models for Evaluating the Risk of Pedestrian-Motor Vehicle Collisions at Intersections and Mid-Blocks. Accident Analysis & Prevention, 84, 99 – 111.
View Publication
Abstract
Walking is a popular form of physical activity associated with clear health benefits. Promoting safe walking for pedestrians requires evaluating the risk of pedestrian motor vehicle collisions at specific roadway locations in order to identify where road improvements and other interventions may be needed. The objective of this analysis was to estimate the risk of pedestrian collisions at intersections and mid-blocks in Seattle, WA. The study used 2007-2013 pedestrian motor vehicle collision data from police reports and detailed characteristics of the microenvironment and macroenvironment at intersection and mid-block locations. The primary outcome was the number of pedestrian motor vehicle collisions over time at each location (incident rate ratio [IRR] and 95% confidence interval [95% CI]). Multilevel mixed effects Poisson models accounted for correlation within and between locations and census blocks over time. Analysis accounted for pedestrian and vehicle activity (e.g., residential density and road classification). In the final multivariable model, intersections with 4 segments or 5 or more segments had higher pedestrian collision rates compared to mid-blocks. Non-residential roads had significantly higher rates than residential roads, with principal arterials having the highest collision rate. The pedestrian collision rate was higher by 9% per 10 feet of street width. Locations with traffic signals had twice the collision rate of locations without a signal and those with marked crosswalks also had a higher rate. Locations with a marked crosswalk also had higher risk of collision. Locations with a one-way road or those with signs encouraging motorists to cede the right-of-way to pedestrians had fewer pedestrian collisions. Collision rates were higher in locations that encourage greater pedestrian activity (more bus use, more fast food restaurants, higher employment, residential, and population densities). Locations with higher intersection density had a lower rate of collisions as did those in areas with higher residential property values. The novel spatiotemporal approach used that integrates road/crossing characteristics with surrounding neighborhood characteristics should help city agencies better identify high-risk locations for further study and analysis. Improving roads and making them safer for pedestrians achieves the public health goals of reducing pedestrian collisions and promoting physical activity. (C) 2015 Elsevier Ltd. All rights reserved.
Keywords
Pedestrian Accidents; Road Interchanges & Intersections; Built Environment; Pedestrian Crosswalks; Correlation (statistics); Collision Risk; Multilevel Model; Pedestrians; Geographic Information-systems; Road-traffic Injuries; Physical-activity; Signalized Intersections; Impact Speed; Urban Form; Land-use; Safety; Walking
Pan, Haixiao; Li, Jing; Chen, Peng. (2016). Study on the Ownership of Motorized and Non-Motorized Vehicles in Suburban Metro Station Areas: A Structural Equation Approach. Urban Rail Transit, 2(2), 47 – 58.
View Publication
Abstract
As Chinese megacities are experiencing a large-scale motorization and suburbanization, an ever greater number of households are relocated to suburban towns. The increasing average travel distance surely encourages car growth. China is now the world's largest car consumer, resulting in a series of unforeseen environmental and public health issues. On the other hand, scooters, electric bikes, and motorcycles become attractive options to substitute non-motorized bicycles. The ongoing demographic changes should also be taken in account. China has a rapidly aging population and a higher birth rate following reforms to the one-child policy allowing couples to have a second child. These changes will lead to a dramatic alteration of the household composition in the near future. Under above emerging contexts, this study aims to understand what implies the ownership of motorized and non-motorized vehicles in suburban metro station areas by means of a structural equation model. The data employed in this study are based on a household survey collected from three neighborhoods in Shanghai suburban metro station areas in 2010. The major findings include: (1) Income is a decisive element in car ownership. Specifically, high-income households have higher propensity to own a car, while middle and poor income families tend to own scooters, electric bikes, motorcycles, or bicycles. (2) Workplace built environment features or mode preferences are not essential to understanding vehicle ownership in Chinese context. (3) Stem families are more likely to own cars; the presence of a child or a senior family member increases the probability of owning a car by enlarging the household. (4) The results estimated for core family and DINK (couple with no child) family are highly consistent, and these families are less likely to own cars. Therefore, transport policies may focus more on households. Providing safe, pleasant, and efficient pedestrian and bicycle paths for children and seniors may decrease the attractiveness of owning cars.
Keywords
Suburban Metro Station Areas; Ownership Of Motorized And Non-motorized Vehicles; Built Environment; Mode Preferences; Family Composition; Structural Equation Model
Quistberg, D. Alex; Howard, Eric J.; Hurvitz, Philip M.; Moudon, Anne V.; Ebel, Beth E.; Rivara, Frederick P.; Saelens, Brian E. (2017). The Relationship between Objectively Measured Walking and Risk of Pedestrian–Motor Vehicle Collision. American Journal Of Epidemiology, 185(9), 810 – 821.
View Publication
Abstract
Safe urban walking environments may improve health by encouraging physical activity, but the relationship between an individual's location and walking pattern and the risk of pedestrian-motor vehicle collision is unknown. We examined associations between individuals' walking bouts and walking risk, measured as mean exposure to the risk of pedestrian-vehicle collision. Walking bouts were ascertained through integrated accelerometry and global positioning system data and from individual travel-diary data obtained from adults in the Travel Assessment and Community Study (King County, Washington) in 2008-2009. Walking patterns were superimposed onto maps of the historical probabilities of pedestrian-vehicle collisions for intersections and midblock segments within Seattle, Washington. Mean risk of pedestrian-vehicle collision in specific walking locations was assessed according to walking exposure (duration, distance, and intensity) and participant demographic characteristics in linear mixed models. Participants typically walked in areas with low pedestrian collision risk when walking for recreation, walking at a faster pace, or taking longer-duration walks. Mean daily walking duration and distance were not associated with collision risk. Males walked in areas with higher collision risk compared with females, while vehicle owners, residents of single-family homes, and parents of young children walked in areas with lower collision risk. These findings may suggest that pedestrians moderate collision risk by using lower-risk routes.
Keywords
Traffic Accidents; Confidence Intervals; Geographic Information Systems; Health Promotion; Maps; Research Funding; Walking; Accelerometry; Physical Activity; Data Analysis Software; Diary (literary Form); Descriptive Statistics; Risk Factors; Washington (state); Accidents; Environment Design; Global Positioning Systems; Pedestrians; Risk Assessment; Traffic; Physical-activity; Built Environment; Traffic Safety; Accident Risk; Injury Rates; Route-choice; Exposure; Gps; Travel; Accidents, Traffic
Kim, Yong-Woo. (2019). The Impact of Make-Ready Process on Project Cost Performance in Heavy Civil Construction Projects. Production Planning & Control. The Management Of Operations, 30(13), 1064 – 1071.
View Publication
Abstract
The research investigates the relationship between the production plan reliability and the project cost performance using project data in the heavy civil construction sector. The research also investigates the attributes of a make-ready process using the statistical analysis. This study shows that production planning reliability (i.e. Per cent Constraint Removal (PCR) and Per cent Plan Complete (PPC)) and project cost performance (CPI) are significantly correlated in the heavy construction projects. The findings show that there is a more significant correlation between production planning reliability and project cost performance in project-scaled data than in monthly scaled data. They suggest that there is a time-lag between when the variance of workflow occurs and when the workflow variance impacts on the project cost performance. The result of the analysis also shows that the measure of make-ready process, PCR, has a more significant correlation with the project cost performance than the measure of weekly plan reliability, PPC.
Keywords
Construction Equipment; Construction Industry; Production Planning; Statistical Analysis; Heavy Construction Projects; Production Planning Reliability; Project Data; Production Plan Reliability; Civil Construction Projects; Make-ready Process; Project Cost Performance; Project-scaled Data; Construction Planning; Ppc (per Cent Plan Complete); Pcr (per Cent Constraints Removal)
Nnaji, Chukwuma; Karakhan, Ali A.; Gambatese, John; Lee, Hyun Woo. (2020). Case Study to Evaluate Work-Zone Safety Technologies in Highway Construction. Practice Periodical On Structural Design And Construction, 25(3).
View Publication
Abstract
The construction industry is known for its conservative approach toward adopting new, emerging technologies. This conservative approach for adopting technology is caused by multiple factors including the lack of adequate resources to guide construction practitioners in the process of evaluating whether a construction firm should adopt a certain technology or not. Previous studies have already proposed rigorous protocols for evaluating work-zone technologies, but the implementation of such protocols is still unclear to many construction practitioners. The objective of this study is to provide a case study example of how evaluation protocols can be used in practice to determine whether a firm should adopt a certain work-zone technology. The case study focused on assessing the usefulness of commercially available work-zone intrusion alert technologies (WZIATs). The results of the evaluation revealed that some WZIATs could be more attractive to construction organizations and agencies in terms of providing louder alarms, being more mobile, and allowing a higher transmission range. The case study example discussed in this study is expected to provide invaluable practical information to practitioners in the construction industry interested in evaluating and adopting emerging technologies.
Keywords
Construction Industry; Mobile Radio; Occupational Safety; Road Building; Road Safety; Highway Construction; Conservative Approach; Construction Practitioners; Construction Firm; Rigorous Protocols; Work-zone Technology; Case Study Example; Evaluation Protocols; Commercially Available Work-zone Intrusion Alert Technologies; Construction Organizations; Evaluate Work-zone Safety Technologies; Speed; Signs; Work Zone; Safety Technology; Intrusion Alert; Evaluation Protocol
Peers, Justin B.; Gregg, Christopher E.; Lindell, Michael K.; Pelletier, Denis; Romerio, Franco; Joyner, Andrew T. (2021). The Economic Effects of Volcanic Alerts-A Case Study of High-Threat US Volcanoes. Risk Analysis, 41(10).
View Publication
Abstract
A common concern about volcanic unrest is that the communication of information about increasing volcanic alert levels (VALs) to the public could cause serious social and economic impacts even if an eruption does not occur. To test this statement, this study examined housing prices and business patterns from 1974-2016 in volcanic regions with very-high threat designations from the U.S. Geological Survey (USGS)-Long Valley Caldera (LVC), CA (caldera); Mount St. Helens (MSH), Washington (stratovolcano); and Kilauea, HawaiModified Letter Turned Commai (shield volcano). To compare economic trends in nonvolcanic regions that are economically dependent on tourism, Steamboat Springs, CO, served as a control as it is a ski-tourism community much like Mammoth Lakes in LVC. Autoregressive distributed lag (ARDL) models predicted that housing prices were negatively affected by VALs at LVC from 1982-1983 and 1991-1997. While VALs associated with unrest and eruptions included in this study both had short-term indirect effects on housing prices and business indicators (e.g., number of establishments, employment, and salary), these notifications were not strong predictors of long-term economic trends. Our findings suggest that these indirect effects result from both eruptions with higher level VALs and from unrest involving lower-level VAL notifications that communicate a change in volcanic activity but do not indicate that an eruption is imminent or underway. This provides evidence concerning a systemic issue in disaster resilience. While disaster relief is provided by the U.S. federal government for direct impacts associated with disaster events that result in presidential major disaster declarations, there is limited or no assistance for indirect effects to businesses and homeowners that may follow volcanic unrest with no resulting direct physical losses. The fact that periods of volcanic unrest preceding eruption are often protracted in comparison to precursory periods for other hazardous events (e.g., earthquakes, hurricanes, flooding) makes the issue of indirect effects particularly important in regions susceptible to volcanic activity.
Keywords
Direct Impacts; Econometric Analysis; Indirect Impacts; Risk Assessment; Volcano Alert Levels; Earthquakes; Hurricanes; Threats; Housing Costs; Business Indicators; Disasters; Disaster Relief; Declarations; Volcanoes; Resilience; Tourism; Economics; Flooding; Trends; Calderas; Geological Surveys; Housing Prices; Eruptions; Precursors; Indirect Effects; Business; Disaster Management; Economic Trends; Autoregressive Models; Floods; Employment Status; Prices; Federal Government; Housing; Eruption; Economic Impact; Seismic Activity; Volcanic Activity; Earthquake Prediction; Lakes; Communication; United States--us
Moudon, Anne Vernez; Sohn, D. W.; Kavage, Sarah E.; Mabry, Jean E. (2011). Transportation-Efficient Land Use Mapping Index (TELUMI), a Tool to Assess Multimodal Transportation Options in Metropolitan Regions. International Journal Of Sustainable Transportation, 5(2), 111 – 133.
View Publication
Abstract
The Transportation-Efficient Land Use Mapping Index (TELUMI) is a tool to visualize and to quantify micro-level metropolitan land use and development patterns as they affect travel demand. It can assist transportation and urban planning authorities in identifying zones where land use supports multimodal travel and in determining a region's transportation system efficiency. An application of the TELUMI in the Seattle region showed that residential units and employment concentrated in transportation-efficient areas covering less than 20 percent of the region. An interactive, multi-scaled tool, the TELUMI can also support scenario building to simulate land use changes that improve transportation system performance.
Keywords
Urban; Geographic Information Systems; Land Use; Mapping Index; Metropolitan; Multimodal Travel; Transportation Efficiency
Perry, Cynthia K.; Herting, Jerald R.; Berke, Ethan M.; Nguyen, Huong Q.; Moudon, Anne Vernez; Beresford, Shirley A. A.; Ockene, Judith K.; Manson, Joann E.; Lacroix, Andrea Z. (2013). Does Neighborhood Walkability Moderate the Effects of Intrapersonal Characteristics on Amount of Walking in Post-Menopausal Women? Health & Place, 21, 39 – 45.
View Publication
Abstract
This study identifies factors associated with walking among postmenopausal women and tests whether neighborhood walkability moderates the influence of intrapersonal factors on walking. We used data from the Women's Health Initiative Seattle Center and linear regression models to estimate associations and interactions. Being white and healthy, having a high school education or beyond and greater non-walking exercise were significantly associated with more walking. Neighborhood walkability was not independently associated with greater walking, nor did it moderate influence of intrapersonal factors on walking. Specifying types of walking (e.g., for transportation) can elucidate the relationships among intrapersonal factors, the built environment, and walking. (C) 2013 Elsevier Ltd. All rights reserved.
Keywords
Self-talk; Postmenopause; Walking; Women's Health; Built Environment; Social Interaction; Regression Analysis; Postmenopausal Women; Walkability; Physical-activity; Older-adults; United-states; Us Adults; Exercise; Obesity; Transportation; Association; Attributes