Stewart, Orion T.; Carlos, Heather A.; Lee, Chanam; Berke, Ethan M.; Hurvitz, Philip M.; Li, Li; Moudon, Anne Vernez; Doescher, Mark P. (2016). Secondary GIS Built Environment Data for Health Research: Guidance for Data Development. Journal Of Transport & Health, 3(4), 529 – 539.
View Publication
Abstract
Built environment (BE) data in geographic information system (GIS) format are increasingly available from public agencies and private providers. These data can provide objective, low-cost BE data over large regions and are often used in public health research and surveillance. Yet challenges exist in repurposing GIS data for health research. The GIS data do not always capture desired constructs; the data can be of varying quality and completeness; and the data definitions, structures, and spatial representations are often inconsistent across sources. Using the Small Town Walkability study as an illustration, we describe (a) the range of BE characteristics measurable in a GIS that may be associated with active living, (b) the availability of these data across nine U.S. small towns, (c) inconsistencies in the GIS BE data that were available, and (d) strategies for developing accurate, complete, and consistent GIS BE data appropriate for research. Based on a conceptual framework and existing literature, objectively measurable characteristics of the BE potentially related to active living were classified under nine domains: generalized land uses, morphology, density, destinations, transportation system, traffic conditions, neighborhood behavioral conditions, economic environment, and regional location. At least some secondary GIS data were available across all nine towns for seven of the 9 BE domains. Data representing high-resolution or behavioral aspects of the BE were often not available. Available GIS BE data - especially tax parcel data often contained varying attributes and levels of detail across sources. When GIS BE data were available from multiple sources, the accuracy, completeness, and consistency of the data could be reasonable ensured for use in research. But this required careful attention to the definition and spatial representation of the BE characteristic of interest. Manipulation of the secondary source data was often required, which was facilitated through protocols. (C) 2015 Elsevier Ltd. All rights reserved.
Keywords
Geographic Information-systems; Physical-activity; Land-use; Walking; Neighborhood; Associations; Density; Design; Adults; Travel; Active Travel; Pedestrian; Urban Design; Community Health; Rural
Chen, Peng; Sun, Feiyang; Wang, Zhenbo; Gao, Xu; Jiao, Junfeng; Tao, Zhimin. (2018). Built Environment Effects on Bike Crash Frequency and Risk in Beijing. Journal Of Safety Research, 64, 135 – 143.
View Publication
Abstract
Introduction: Building a safe biking environment is crucial to encouraging bicycle use. In developed areas with higher density and more mixed land use, the built environment factors that pose a crash risk may vary. This study investigates the connection between biking risk factors and the compact built environment, using data for Beijing. Method: In the context of China, this paper seeks to answer two research questions. First, what types of built environment factors are correlated with bike-automobile crash frequency and risk? Second, how do risk factors vary across different types of bikes? Poisson lognormal random effects models are employed to examine how land use and roadway design factors are associated with the bike-automobile crashes. Results: The main findings are: (1) bike-automobile crashes are more likely to occur in densely developed areas, which is characterized by higher population density, more mixed land use, denser roads and junctions, and more parking lots; (2) areas with greater ground transit are correlated with more bike-automobile crashes and higher risks of involving in collisions; (3) the percentages of wider streets show negative associations with bike crash frequency; (4) built environment factors cannot help explain factors contributing to motorcycle-automobile crashes. Practical Applications: In China's dense urban context, important policy implications for bicycle safety improvement drawn from this study include: prioritizing safety programs in urban centers, applying safety improvements to areas with more ground transit, placing bike-automobile crash countermeasures at road junctions, and improving bicycle safety on narrower streets. (C) 2018 National Safety Council and Elsevier Ltd. All rights
Keywords
Motorcycling Accidents; Built Environment; Motorcycling; Poisson Distribution; Safety; Beijing (china); Bike-automobile Crash; Frequency; Poisson Lognormal Random Effects Model; Risk; Signalized Intersections; Transportation Modes; Urban Intersections; Bicycle Crashes; Motor-vehicle; Riders; Infrastructure; China; Severity; Frequency Distribution; Risk Factors; Bicycles; Fatalities; Collisions; Traffic Accidents; Safety Programs; Urban Environments; Traffic Safety; Population Density; Crashes; Streets; Environmental Effects; Environmental Engineering; Roads; Land Use; Risk Analysis; Urban Areas; Road Design; Construction; Ecological Risk Assessment; Design Factors; Motorcycles; Urban Transportation; Studies; Safety Management; Beijing China
Sheth, Manali; Butrina, Polina; Goodchild, Anne; McCormack, Edward. (2019). Measuring Delivery Route Cost Trade-Offs between Electric-Assist Cargo Bicycles and Delivery Trucks in Dense Urban Areas. European Transport Research Review, 11(1).
View Publication
Abstract
Introduction: Completing urban freight deliveries is increasingly a challenge in congested urban areas, particularly when delivery trucks are required to meet time windows. Depending on the route characteristics, Electric Assist (EA) cargo bicycles may serve as an economically viable alternative to delivery trucks. The purpose of this paper is to compare the delivery route cost trade-offs between box delivery trucks and EA cargo bicycles that have the same route and delivery characteristics, and to explore the question, under what conditions do EA cargo bikes perform at a lower cost than typical delivery trucks? Methods: The independent variables, constant variables, and assumptions used for the cost function comparison model were gathered through data collection and a literature review. A delivery route in Seattle was observed and used as the base case; the same route was then modelled using EA cargo bicycles. Four separate delivery scenarios were modeled to evaluate how the following independent route characteristics would impact delivery route cost - distance between a distribution center (DC) and a neighborhood, number of stops, distance between each stop, and number of parcels per stop. Results: The analysis shows that three of the four modeled route characteristics affect the cost trade-offs between delivery trucks and EA cargo bikes. EA cargo bikes are more cost effective than delivery trucks for deliveries in close proximity to the DC (less than 2 miles for the observed delivery route with 50 parcels per stop and less than 6 miles for the hypothetical delivery route with 10 parcels per stop) and at which there is a high density of residential units and low delivery volumes per stop. Conclusion: Delivery trucks are more cost effective for greater distances from the DC and for large volume deliveries to one stop.
Keywords
Transportation; Sustainable Transportation; Parcel Post; Tricycles; Warehouses; Metropolitan Areas; Cargo Bicycles; Cargo Bike; Delivery Modes; E-trike; Electric Assist Cargo Bicycle; Electric Tricycle; Green Transportation; Parcel Deliveries; Urban Deliveries; Urban Logistics
Berrigan, David; Dannenberg, Andrew L.; Lee, Michelle; Rodgers, Kelly; Wojcik, Janet R.; Wali, Behram; Tribby, Calvin P.; Buehler, Ralph; Sallis, James F.; Roberts, Jennifer D.; Steedly, Ann; Peng, Binbin; Eisenberg, Yochai; Rodriguez, Daniel A. (2021). The 2019 Conference on Health and Active Transportation: Research Needs and Opportunities. International Journal Of Environmental Research And Public Health, 18(22).
View Publication
Abstract
Active transportation (AT) is widely viewed as an important target for increasing participation in aerobic physical activity and improving health, while simultaneously addressing pollution and climate change through reductions in motor vehicular emissions. In recent years, progress in increasing AT has stalled in some countries and, furthermore, the coronavirus (COVID-19) pandemic has created new AT opportunities while also exposing the barriers and health inequities related to AT for some populations. This paper describes the results of the December 2019 Conference on Health and Active Transportation (CHAT) which brought together leaders from the transportation and health disciplines. Attendees charted a course for the future around three themes: Reflecting on Innovative Practices, Building Strategic Institutional Relationships, and Identifying Research Needs and Opportunities. This paper focuses on conclusions of the Research Needs and Opportunities theme. We present a conceptual model derived from the conference sessions that considers how economic and systems analysis, evaluation of emerging technologies and policies, efforts to address inclusivity, disparities and equity along with renewed attention to messaging and communication could contribute to overcoming barriers to development and use of AT infrastructure. Specific research gaps concerning these themes are presented. We further discuss the relevance of these themes considering the pandemic. Renewed efforts at research, dissemination and implementation are needed to achieve the potential health and environmental benefits of AT and to preserve positive changes associated with the pandemic while mitigating negative ones.
Keywords
Improving Arterial Roads; Physical-activity; Cost-effectiveness; Built Environment; Autonomous Vehicles; Walking; Behavior; Impact; Active Transportation; Covid-19; Climate Change; Physical Activity; Public Health; Pandemics; Public Transportation; Collaboration; Transportation; Economic Models; Environmental Impact; Outdoor Air Quality; Vehicle Emissions; Coronaviruses; Hispanic Americans; Fatalities; Systems Analysis; African Americans; Infrastructure; Medical Research; Committees; Land Use; Economic Analysis; New Technology; United States--us
Lindell, Michael K.; Prater, Carla S.; House, Donald H. (2022). Cascadia Subduction Zone Residents’ Tsunami Evacuation Expectations. Geosciences (2076-3263), 12(5).
View Publication
Abstract
The U.S. Pacific Northwest coast must be prepared to evacuate immediately after a Cascadia Subduction Zone earthquake. This requires coastal residents to understand the tsunami threat, have accurate expectations about warning sources, engage in preimpact evacuation preparedness actions, and plan (and practice) their evacuation logistics, including an appropriate transportation mode, evacuation route, and destination. A survey of 221 residents in three communities identified areas in which many coastal residents have reached adequate levels of preparedness. Moreover, residents who are not adequately prepared are willing to improve their performance in most of the areas in which they fall short. However, many respondents expect to engage in time-consuming evacuation preparations before evacuating. Additionally, their estimates of evacuation travel time might be inaccurate because only 28-52% had practiced their evacuation routes. These results indicate that more coastal residents should prepare grab-and-go kits to speed their departure, as well as practice evacuation preparation and evacuation travel to test the accuracy of these evacuation time estimates. Overall, these results, together with recommendations for overcoming them, can guide CSZ emergency managers in methods of improving hazard awareness and education programs. In addition, these data can guide transportation engineers' evacuation analyses and evacuation plans.
Keywords
Subduction Zones; Tsunamis; Tsunami Warning Systems; Civilian Evacuation; Earthquake Zones; Transportation Engineering; Expectation (psychology); Residents; Cascadia Subduction Zone; Evacuation Preparedness; Evacuation Time Estimates; Tsunami; Natural Warning Signs; Coastal Communities; American-samoa; New-zealand; Earthquake; Behavior; Preparedness; Awareness; Japan; Washington; Earthquakes; Transportation; Evacuations & Rescues; Travel Time; Subduction; Surveying; Evacuation; Travel; Coasts; Emergency Warning Programs; Seismic Activity; Emergency Preparedness; Perceptions; Traveltime; Coastal Zone; Peers; Estimates; Logistics; Evacuation Routing; Subduction (geology); Households; United States--us; Pacific Northwest; Cascadia
This year, the Washington State Legislature allocated $4 million to continue work on a Cascadia Corridor high-speed rail and another $150 million to use as matching funds over the next six years to leverage federal funds available under the Infrastructure Investment and Jobs Act (IIJA). Now that there is a significant funding commitment, how can an effort in Cascadia take the lessons learned and build on the success of others? That’s what a new Mobility Innovation Center project will examine, led…
Though Transit Equity Day is just one day, the issue of equity on Seattle’s public transit is an ongoing and important conversation to Seattle and King County residents. Neighborhoods across the county have unequal access to transit lines; bus stops are often located in inconvenient or dangerous places due to oncoming traffic and lack of sidewalks; and bus schedules are irregular or sparse, with long wait times. These are just a few of the challenges folks might experience before getting…
My current Ph.D. research is investigating the history of transportation in the U.S. national parks. My research will explore from a historical and ecological perspective how to protect and preserve the park’s natural resources, while accommodating the public’s ability to visit the parks without causing irreparable harm. I believe a new strategy is required to address the critical transportation issues in these parks. I would like to formulate, develop, and evaluate a strategic model that explores alternatives to traditional modes of transport within national parks. There are three basic components of my research: conflict resolution, environmental ethics, and the ecological effects of roads (road ecology).
The main impetus for my decision to apply to the PhD program in the Built Environment, at the University of Washington is the opportunity to work in a program that offers me a unique opportunity to investigate the complicated problem of human-environment relationships. This will allow me to realize my belief that environments can be manipulated and planned to enhance the quality of people’s lives. I believe that significant impacts on the development of sustainable responses to environmental challenges can best be achieved through education and research.
A team led by the University of Washington has received a nearly $2 million grant from the National Science Foundation to further research into how urban societal systems can be organized to be both efficient and resilient. The Leading Engineering for America’s Prosperity, Health and Infrastructure (LEAP-HI) project, based in the UW College of Engineering, supports fundamental research to generate the knowledge, mechanisms and tools needed to design an adaptable society. That is one, researchers say, that can switch between different operating strategies depending…
The Pacific Northwest Transportation Consortium (PacTrans) announced in January 2021 the project proposals selected for funding. Qing Shen, Professor of Urban Design and Planning and Chair of the Interdisciplinary PhD Program in Urban Design and Planning is among those selected for project funding. Shen is working alongside Co-Principal Investigator Catherine (Casey) Gifford–Innovative Mobility Senior Planner–on the applied research project titled “Supplementing fixed-route transit with dynamic shared mobility services: a marginal cost comparison approach”. The project goal is to address a…