Chen, Chen; Lindell, Michael K.; Wang, Haizhong. (2021). Tsunami Preparedness and Resilience in the Cascadia Subduction Zone: A Multistage Model of Expected Evacuation Decisions and Mode Choice. International Journal Of Disaster Risk Reduction, 59.
View Publication
Abstract
Physical scientists have estimated that the Cascadia Subduction Zone (CSZ) has as much as a 25% chance to produce a M9.0 earthquake and tsunami in the next 50 years, but few studies have used survey data to assess household risk perceptions, emergency preparedness, and evacuation intentions. To understand these phenomena, this study conducted a mail-based household questionnaire using the Protective Action Decision Model (PADM) as a guide to collect 483 responses from two coastal communities in the CSZ: Crescent City, CA and Coos Bay, OR. We applied multistage regression models to assess the effects of critical PADM variables. The results showed that three psychological variables (risk perception, perceived hazard knowledge, and evacuation mode efficacy) were associated with some demographic variables and experience variables. Evacuation intention and evacuation mode choice are associated with those psychological variables but not with demographic variables. Contrary to previous studies, location and experience had no direct impact on evacuation intention or mode choice. We also analyzed expected evacuation mode compliance and the potential of using micro-mobility during tsunami response. This study provides empirical evidence of tsunami preparedness and intentions to support interdisciplinary evacuation modeling, tsunami hazard education, community disaster preparedness, and resilience plans.
Keywords
False Discovery Rate; American-samoa; Earthquake; Washington; Behavior; Oregon; Wellington; Responses; Disaster; Tsunami Evacuation; Cascadia Subduction Zone; Risk Perception
Wang, Yiyuan; Moudon, Anne Vernez; Shen, Qing. (2022). How Does Ride-Hailing Influence Individual Mode Choice? An Examination Using Longitudinal Trip Data from the Seattle Region. Transportation Research Record, 2676(3), 621 – 633.
View Publication
Abstract
This study investigates the impacts of ride-hailing, which we define as mobility services consisting of both conventional taxis and app-based services offered by transportation network companies, on individual mode choice. We examine whether ride-hailing substitutes for or complements travel by driving, public transit, or walking and biking. The study overcomes some of the limitations of convenience samples or cross-sectional surveys used in past research by employing a longitudinal dataset of individual travel behavior and socio-demographic information. The data include three waves of travel log data collected between 2012 and 2018 in transit-rich areas of the Seattle region. We conducted individual-level panel data modeling, estimating independently pooled models and fixed-effect models of average daily trip count and duration for each mode, while controlling for various factors that affect travel behavior. The results provide evidence of substitution effects of ride-hailing on driving. We found that cross-sectionally, participants who used more ride-hailing tended to drive less, and that longitudinally, an increase in ride-hailing usage was associated with fewer driving trips. No significant associations were found between ride-hailing and public transit usage or walking and biking. Based on detailed travel data of a large population in a major U.S. metropolitan area, the study highlights the value of collecting and analyzing longitudinal data to understand the impacts of new mobility services.
Keywords
Shared Mobility; Ride-hailing; Longitudinal Data; Substitution Between Travel Modes; Complementarity Between Travel Modes; Services; Uber
Sohn, Dong Wook; Moudon, Anne Vernez; Lee, Jeasun. (2012). The Economic Value of Walkable Neighborhoods. Urban Design International, 17(2), 115 – 128.
View Publication
Abstract
This study investigated how the benefits of a walkable neighborhood were reflected in the American real estate market by examining the economic values of urban environmental factors supporting walking activities. Property values were used as a proxy measure for economic value and analyzed in relation to land use characteristics that have been known to correlate with walking at the neighborhood scale. Four aspects of the built environment supporting walking were included in the analyses: development density, land use mix, public open space and pedestrian infrastructure. Hedonic models were employed where the property value was regressed on the measures of the four sets of correlates of walking in a neighborhood. Models were estimated for four land use types - single-family residential, rental multi-family residential, commercial and office. The findings did not support previous arguments that increasing density weakens the quality of a neighborhood. To the contrary, the positive association of higher development density with the value of single-family residential properties detected in King County suggested that high development density might increase surrounding property values. The pedestrian infrastructure and land use mix significantly contributed to increases in rental multi-family residential property values. Higher development density with higher street and sidewalk coverage were also favored by retail service uses. In relation to land use mix, mixing retail service uses and rental multi-family residential uses helped make rental housings more attractive. URBAN DESIGN International (2012) 17, 115-128. doi:10.1057/udi.2012.1; published online 4 April 2012
Keywords
Land-use; Physical-activity; Travel Behavior; Smart Growth; Mode Choice; Urban Form; Walking; Gis; Transportation; Accessibility; Mixed Land Use; Neighborhood; Urban Design
Lee, Namhun; Schaufelberger, John E. (2014). Risk Management Strategies for Privatized Infrastructure Projects: Study of the Build-Operate-Transfer Approach in East Asia and the Pacific. Journal Of Management In Engineering, 30(3).
View Publication
Abstract
Private-public partnerships have been adopted for the development of public infrastructure to meet the growing demand for public services. Many Asian countries have used the build-operate-transfer (BOT) approach to develop public infrastructure projects. However, the potential benefits of undertaking a BOT project are accompanied by corresponding risks from the private sector's perspective. The objectives of this study are (1)to identify and discuss major risks inherent in the East Asia and Pacific regions, and (2)to propose risk management strategies for future BOT projects to be successful. This paper reports the results of five case study analyses undertaken to review their primary risks and mitigated methods. In addition, this paper proposes some strategies for future BOT projects. Two main categories of risks were analyzed: general risks and project-specific risks. Risk management strategies were suggested for each category of risk. The main finding of this study indicates that the private sector cannot be the only participant in risk management. The host government's active support is the most essential factor for the profitability and economic viability of a BOT project in the East Asia and Pacific regions.
Keywords
Organisational Aspects; Project Management; Public Administration; Public Utilities; Risk Management; Structural Engineering; Risk Management Strategies; Privatized Infrastructure Projects; Build-operate-transfer Approach; East Asia; Private-public Partnerships; Public Services; Asian Countries; Public Infrastructure Projects; Pacific Regions; Future Bot Projects; Project-specific Risks; General Risks; Build-operate-transfer; Privatized Infrastructure
Choi, Kunhee; Lee, Hyun Woo; Mao, Zhuting; Lavy, Sarel; Ryoo, Boong Yeol. (2016). Environmental, Economic, and Social Implications of Highway Concrete Rehabilitation Alternatives. Journal Of Construction Engineering And Management, 142(2).
View Publication
Abstract
Currently, there is no comprehensive benchmark of life-cycle assessment for the rigid pavement alternatives for highway rehabilitation. To fill this gap, the major objective of this study is to investigate the environmental, economic, and social impacts of the three most widely adopted rigid pavement choices through a life-cycle assessment approach with custom-built economic input-output life-cycle assessment (EIO-LCA) models. Quantity takeoffs were performed for each alternative assuming a 1-lane-km highway rehabilitation. Subsequently, the construction costs of each alternative were computed in order to determine the present values for a life span of 50years, while at the same time accounting for a different life expectancy for each pavement rehabilitation strategy. The present values were then incorporated into a corresponding EIO-LCA model. The results clearly indicate that continuously reinforced concrete pavement (CRCP) is the most sustainable choice and much preferable to the other alternatives for minimizing negative environmental, economic and social impacts from the life-cycle perspective. This finding champions a wider adoption of CRCP for future sustainable transportation infrastructure development projects, as CRCP's relatively high initial construction cost can be recouped by long-term sustained benefits. The results and findings of this study can serve as a solid foundation for industry practitioners and decision-makers to make better-informed project decisions when choosing the most sustainable pavement alternatives from a life-cycle perspective. (C) 2015 American Society of Civil Engineers.
Keywords
Construction Industry; Environmental Management; Life Cycle Costing; Product Life Cycle Management; Project Management; Reinforced Concrete; Road Building; Socio-economic Effects; Sustainable Development; Economic Implications; Environmental Implications; Industry Practitioners; Sustainable Transportation Infrastructure Development Projects; Continuously Reinforced Concrete Pavement; Crcp; Eio-lca Model; Life Span; Construction Costs; Custom-built Economic Input-output Life-cycle Assessment Models; Rigid Pavement Alternatives; Highway Concrete Rehabilitation Alternatives; Life-cycle Assessment Approach; Social Implications; Life-cycle Assessment; Pavement; Asphalt; Pavement Rehabilitation; Environmental Assessment; Economic Factors; Land Use
Chaix, Basile; Duncan, Dustin; Vallee, Julie; Vernez-moudon, Anne; Benmarhnia, Tarik; Kestens, Yan. (2017). The Residential Effect Fallacy in Neighborhood and Health Studies Formal Definition, Empirical Identification, and Correction. Epidemiology, 28(6), 789 – 797.
View Publication
Abstract
Background: Because of confounding from the urban/rural and socioeconomic organizations of territories and resulting correlation between residential and nonresidential exposures, classically estimated residential neighborhood-outcome associations capture nonresidential environment effects, overestimating residential intervention effects. Our study diagnosed and corrected this residential effect fallacy bias applicable to a large fraction of neighborhood and health studies. Methods: Our empirical application investigated the effect that hypothetical interventions raising the residential number of services would have on the probability that a trip is walked. Using global positioning systems tracking and mobility surveys over 7 days (227 participants and 7440 trips), we employed a multilevel linear probability model to estimate the trip-level association between residential number of services and walking to derive a naive intervention effect estimate and a corrected model accounting for numbers of services at the residence, trip origin, and trip destination to determine a corrected intervention effect estimate (true effect conditional on assumptions). Results: There was a strong correlation in service densities between the residential neighborhood and nonresidential places. From the naive model, hypothetical interventions raising the residential number of services to 200, 500, and 1000 were associated with an increase by 0.020, 0.055, and 0.109 of the probability of walking in the intervention groups. Corrected estimates were of 0.007, 0.019, and 0.039. Thus, naive estimates were overestimated by multiplicative factors of 3.0, 2.9, and 2.8. Conclusions: Commonly estimated residential intervention-outcome associations substantially overestimate true effects. Our somewhat paradoxical conclusion is that to estimate residential effects, investigators critically need information on nonresidential places visited.
Keywords
Self-rated Health; Record Cohort; Physical-activity; Transportation Modes; Built Environment; Activity Spaces; Research Agenda; Risk-factors; Associations; Exposure
Lee, Hyun Woo; Harapanahalli, Bharat Anand; Nnaji, Chukwuma; Kim, Jonghyeob; Gambatese, John. (2018). Feasibility of Using QR Codes in Highway Construction Document Management. Transportation Research Record, 2672(26), 114 – 123.
View Publication
Abstract
Highway construction occasionally takes place in remote locations, making its document management challenging especially when frequent document revisions occur. With the recent advancement of smartphones and tablets, Quick Response (QR) codes can provide project teams rapid and reliable access to up-to-date documents required for field operations. As a result, the use of QR codes can lead to a reduced need for traveling or meeting for document revisions, and reduce the amount of hardcopy documents and storage space. Despite the potential for significant benefits, there have been few studies aimed at assessing the feasibility of using QR codes in highway construction. In response, the objective of the study was to investigate the benefits of and barriers to using QR codes in highway construction for document management. To conduct the study, first a multi-step process was used, involving an online survey and interviews, with a goal of determining the status quo of highway construction in terms of document management and mobile information technology (IT). The results indicate that hardcopy documentation is still the most prevalent form of document management in highway construction, and hence there is an opportunity for implementing QR codes in conjunction with mobile IT. In the second part of the study, a time study using a real-world infrastructure project was conducted based on three activities: detail look up, specification check, and version check. As a result, the study found statistical evidence that using QR codes can lead to significant time savings.
Keywords
Highway Planning; Information Services; Road Construction; Document Management; Field Operation; Highway Construction; Infrastructure Project; Online Surveys; Quick Response Code; Remote Location; Statistical Evidence
Buszkiewicz, James; Rose, Chelsea; Gupta, Shilpi; Ko, Linda K.; Mou, Jin; Moudon, Anne, V; Hurvitz, Philip M.; Cook, Andrea; Aggarwal, Anju; Drewnowski, Adam. (2020). A Cross-Sectional Analysis of Physical Activity and Weight Misreporting in Diverse Populations: The Seattle Obesity Study III. Obesity Science & Practice, 6(6), 615 – 627.
View Publication
Abstract
Background: In-person assessments of physical activity (PA) and body weight can be burdensome for participants and cost prohibitive for researchers. This study examined self-reported PA and weight accuracy and identified patterns of misreporting in a diverse sample. Methods: King, Pierce and Yakima county residents, aged 21-59 years (n= 728), self-reported their moderate-to-vigorous PA (MVPA) and weight, in kilograms. Self-reports were compared with minutes of bout-level MVPA, from 3 days of accelerometer data, and measured weights. Regression models examined characteristics associated with underreporting and overreporting of MVPA and weight, the potential bias introduced using each measure and the relation between perceived and measured PA and weight. Results: MVPA underreporting was higher among males and college educated participants; however, there was no differential MVPA overreporting. Weight underreporting was higher among males, those age 40-49 years and persons with obesity. Weight overreporting was higher among Hispanic participants and those reporting stress, unhappiness and fair or poor health. The estimated PA-obesity relation was similar using measured and self-reported PA but not self-reported weight. Perceived PA and weight predicted measured values. Conclusion: Self-reported PA and weight may be useful should objective measurement be infeasible; however, though population-specific adjustment for differential reporting should be considered.
Keywords
Self-reported Weight; Sedentary Behavior; Validation; Accuracy; Height; Adults; Health Disparity; Obesity; Physical Activity; Self-reported Outcomes
Choi, Kunhee; Bae, Junseo; Yin, Yangtian; Lee, Hyun Woo. (2021). Act(2): Time Cost Tradeoffs from Alternative Contracting Methods. Journal Of Management In Engineering, 37(1).
View Publication
Abstract
Incentive/disincentive (I/D) and cost-plus-time (A+B) are two of the most widely used alternative contracting methods (ACMs) for accelerating the construction of highway infrastructure improvement projects. However, little is known about the effects of trade-offs in terms of project schedule and cost performance. This study addresses this problem by creating and testing a stochastic decision support model called accelerated alternative contracting cost-time trade-off (ACT(2)). This model was developed by a second-order polynomial regression analysis and validated by the predicted error sum of square statistic and paired comparison tests. The results of a descriptive trend analysis based on a rich set of high-confidence project data show that I/D is effective at reducing project duration but results in higher cost compared to pure A+B and conventional methods. This cost-time trade-off effect was confirmed by the ACT(2) model, which determines the level of cost-time trade-off for different ACMs. This study will help state transportation agencies promote more effective application of ACMs by providing data-driven performance benchmarking results when evaluating competing acceleration strategies and techniques. (C) 2020 American Society of Civil Engineers.
Keywords
Highway; Construction; Model; Alternative Contracting Methods; Cost-plus-time; A Plus B; Incentive; Infrastructure Trend; Time-cost Trade-off
Ho, Chung; Kim, Yong-woo; Zabinsky, Zelda B. (2022). Prefabrication Supply Chains With Multiple Shops: Optimization For Job Allocation. Automation In Construction, 136.
View Publication
Abstract
Prefabrication or off-site construction is a growing trend contributing to productivity improvements. It motivates specialty contractors and suppliers to operate multiple fabrication shops close to market regions, where a shop can produce and delivery prefabricated components in a timely fashion and at a minimal cost. Few quantitative models are available to assist companies with scheduling and allocation questions. This research utilizes optimization to answer these questions supporting the production planning in prefabrication supply chains. The paper presents an optimization model that seeks minimal cost while considering job demands and shop capacities. Computational results suggest that the model generates a lower-cost production schedule than the early due date (EDD) method. It also indicates that varying due dates cause changes in total cost. Moreover, this research supports decision-makers by analyzing the impacts of changing shop capacities regarding available machines. It provides further insight into construction supply chain management with multiple shops.
Keywords
Supply Chains; Job Shops; Supply Chain Management; Production Scheduling; Production Planning; Warehouses; Construction; Modularization; Optimization; Prefabrication; Scheduling; Off-site Construction; Modular Buildings; Scheduling Model; Precast; Management; Transportation; Performance; Decisions