Skip to content

Back to the Future: Reintegrating Biology to Understand How Past Eco-evolutionary Change Can Predict Future Outcomes

Thompson, Cynthia L.; Alberti, Marina; Barve, Sahas; Battistuzzi, Fabia U.; Drake, Jeana L.; Goncalves, Guilherme Casas; Govaert, Lynn; Partridge, Charlyn; Yang, Ya. (2022). Back to the Future: Reintegrating Biology to Understand How Past Eco-evolutionary Change Can Predict Future Outcomes. Integrative And Comparative Biology, 61(6), 2218-2232.

View Publication

Abstract

During the last few decades, biologists have made remarkable progress in understanding the fundamental processes that shape life. But despite the unprecedented level of knowledge now available, large gaps still remain in our understanding of the complex interplay of eco-evolutionary mechanisms across scales of life. Rapidly changing environments on Earth provide a pressing need to understand the potential implications of eco-evolutionary dynamics, which can be achieved by improving existing eco-evolutionary models and fostering convergence among the sub-fields of biology. We propose a new, data-driven approach that harnesses our knowledge of the functioning of biological systems to expand current conceptual frameworks and develop corresponding models that can more accurately represent and predict future eco-evolutionary outcomes. We suggest a roadmap toward achieving this goal. This long-term vision will move biology in a direction that can wield these predictive models for scientific applications that benefit humanity and increase the resilience of natural biological systems. We identify short, medium, and long-term key objectives to connect our current state of knowledge to this long-term vision, iteratively progressing across three stages: (1) utilizing knowledge of biological systems to better inform eco-evolutionary models, (2) generating models with more accurate predictions, and (3) applying predictive models to benefit the biosphere. Within each stage, we outline avenues of investigation and scientific applications related to the timescales over which evolution occurs, the parameter space of eco-evolutionary processes, and the dynamic interactions between these mechanisms. The ability to accurately model, monitor, and anticipate eco-evolutionary changes would be transformational to humanity's interaction with the global environment, providing novel tools to benefit human health, protect the natural world, and manage our planet's biosphere.

Keywords

Rapid Evolution; Ecological Interactions; Niche Construction; Climate-change; Phenotype; Community; Selection; Fitness; Consequences; Variability

City Planning Policies to Support Health and Sustainability: An International Comparison of Policy Indicators for 25 Cities

Lowe, Melanie; Adlakha, Deepti; Sallis, James F.; Salvo, Deborah; Cerin, Ester; Moudon, Anne Vernez; Higgs, Carl; Hinckson, Erica; Arundel, Jonathan; Boeing, Geoff; Liu, Shiqin; Mansour, Perla; Gebel, Klaus; Puig-ribera, Anna; Mishra, Pinki Bhasin; Bozovic, Tamara; Carson, Jacob; Dygryn, Jan; Florindo, Alex A.; Ho, Thanh Phuong; Hook, Hannah; Hunter, Ruth F.; Lai, Poh-chin; Molina-garcia, Javier; Nitvimol, Kornsupha; Oyeyemi, Adewale L.; Ramos, Carolina D. G.; Resendiz, Eugen; Troelsen, Jens; Witlox, Frank; Giles-corti, Billie. (2022). City Planning Policies to Support Health and Sustainability: An International Comparison of Policy Indicators for 25 Cities. Lancet Global Health, 10(6), E882-E894.

View Publication

Abstract

City planning policies influence urban lifestyles, health, and sustainability. We assessed policy frameworks for city planning for 25 cities across 19 lower-middle-income countries, upper-middle-income countries, and high-income countries to identify whether these policies supported the creation of healthy and sustainable cities. We systematically collected policy data for evidence-informed indicators related to integrated city planning, air pollution, destination accessibility, distribution of employment, demand management, design, density, distance to public transport, and transport infrastructure investment. Content analysis identified strengths, limitations, and gaps in policies, allowing us to draw comparisons between cities. We found that despite common policy rhetoric endorsing healthy and sustainable cities, there was a paucity of measurable policy targets in place to achieve these aspirations. Some policies were inconsistent with public health evidence, which sets up barriers to achieving healthy and sustainable urban environments. There is an urgent need to build capacity for health-enhancing city planning policy and governance, particularly in low-income and middle-income countries.

Keywords

Physical-activity; Population Health; Walkability

Qing Shen awarded funding for commute research survey

The Mobility Innovation Center announced that Qing Shen, professor of Urban Design & Planning and an expert in transportation planning and policy, has received a $100,000 award to study commuting patterns and develop a model to understand the effect of telework and flexible scheduling. The project will build off the existing Commute Trip Reduction (CTR) survey for employers who are in the CTR program as required by state law in the central city portion of Seattle. In addition, a complementary…

Lingzi Wu

Lingzi Wu is an Assistant Professor with the Department of Construction Management (CM) at the University of Washington (UW). Prior to joining UW in September 2022, Dr. Wu served as a postdoctoral fellow in the Department of Civil and Environmental Engineering at University of Alberta, where she received her MSc and PhD in Construction Engineering and Management in 2013 and 2020 respectively. Prior to her PhD, Dr. Wu worked in the industrial construction sector as a project coordinator with PCL Industrial Management from 2013 to 2017.

An interdisciplinary scholar focused on advancing digital transformation in construction, Dr. Wu’s current research interests include (1) integration of advanced data analytics and complex system modeling to enhance construction practices and (2) development of human-in-the-loop decision support systems to improve construction performance (e.g., sustainability and safety). Dr. Wu has published 10 papers in top journals and conference proceedings, including the Journal of Construction Engineering and Management, Journal of Computing in Civil Engineering, and Automation in Construction. Her research and academic excellence has received notable recognition, including a “Best Paper Award” at the 17th International Conference on Modeling and Applied Simulation, and the outstanding reviewer award from the Journal of Construction Engineering and Management.

As an educator and mentor, Dr. Wu aims to create an inclusive, innovative, and interactive learning environment where students develop personal, technical, and transferable skills to grow today, tomorrow, and into the future.

Celina Balderas Guzmán

Celina Balderas Guzmán, PhD, is Assistant Professor in the Department of Landscape Architecture. Dr. Balderas’ research spans environmental planning, design, and science and focuses on climate adaptation to sea level rise on the coast and urban stormwater inland. On the coast, her work demonstrates specific ways that the climate adaptation actions of humans and adaptation of ecosystems are interdependent. Her work explores how these interdependencies can be maladaptive by shifting vulnerabilities to other humans or non-humans, or synergistic. Using ecological modeling, she has explored these interdependencies focusing on coastal wetlands as nature-based solutions. Her work informs cross-sectoral adaptation planning at a regional scale.

Inland, Dr. Balderas studies urban stormwater through a social-ecological lens. Using data science and case studies, her work investigates the relationship between stormwater pollution and the social, urban form, and land cover characteristics of watersheds. In past research, she developed new typologies of stormwater wetlands based on lab testing in collaboration with environmental engineers. The designs closely integrated hydraulic performance, ecological potential, and recreational opportunities into one form.

Her research has been funded by major institutions such as the National Science Foundation, National Socio-Environmental Synthesis Center, UC Berkeley, and the MIT Abdul Latif Jameel Water and Food Systems Lab. She has a PhD in the Department of Landscape Architecture and Environmental Planning from the University of California, Berkeley. Previously, she obtained masters degrees in urban planning and urban design, as well as an undergraduate degree in architecture all from MIT.

Narjes Abbasabadi

Narjes Abbasabadi, Ph.D., is an Assistant Professor in the Department of Architecture at the University of Washington. Dr. Abbasabadi also leads the Sustainable Intelligence Lab. Abbasabadi’s research centers on sustainability and computation in the built environment. Much of her work focuses on advancing design research efforts through developing data-driven methods, workflows, and tools that leverage the advances in digital technologies to enable augmented intelligence in performance-based and human-centered design. With an emphasis on multi-scale exploration, her research investigates urban building energy flows, human systems, and environmental and health impacts across scales—from the scale of building to the scale of neighborhood and city.

Abbasabadi’s research has been published in premier journals, including Applied Energy, Building and Environment, Energy and Buildings, Environmental Research, and Sustainable Cities and Society. She received honors and awards, including “ARCC Dissertation Award Honorable Mention” (Architectural Research Centers Consortium (ARCC), 2020), “Best Ph.D. Program Dissertation Award” (IIT CoA, 2019), and 2nd place in the U.S. Department of Energy (DOE)’s Race to Zero Design Competition (DOE, 2018). In 2018, she organized the 3rd IIT International Symposium on Buildings, Cities, and Performance. She served as editor of the third issue of Prometheus Journal, which received the 2020 Haskell Award from AIA New York, Center for Architecture.

Prior to joining the University of Washington, she taught at the University of Texas at Arlington and the Illinois Institute of Technology. She also has practiced with several firms and institutions and led design research projects such as developing design codes and prototypes for low-carbon buildings. Most recently, she practiced as an architect with Adrian Smith + Gordon Gill Architecture (AS+GG), where she has been involved in major projects, including the 2020 World Expo. Abbasabadi holds a Ph.D. in Architecture from the Illinois Institute of Technology and Master’s and Bachelor’s degrees in Architecture from Tehran Azad University.

Building Bosnia

Winterbottom, Daniel. (2010). Building Bosnia. Landscape Architecture, 100(4), 94 – 102.

Configuration of Earthwork Equipment Considering Environmental Impacts, Cost and Schedule

Kim, Byung-soo; Kim, Yong-woo. (2016). Configuration of Earthwork Equipment Considering Environmental Impacts, Cost and Schedule. Journal Of Civil Engineering And Management, 22(1), 73 – 85.

View Publication

Abstract

Along with promotion of public awareness about sustainability, the concept of sustainability has gained in- creasing attention across all industries. The construction industry is one of the largest industries, and at the same time, among the largest polluters. Thus, the concept of sustainability has become increasingly important to construction firms and many contractors have started to reduce the environmental impacts of their construction activities. As part of the effort to achieve sustainability in construction sector, the study develops a method to select earth-moving equipment, based on their environmental impacts as well as duration and cost considerations. To this end, the study initially devel- ops a model for determining construction costs and duration as well as a model for determining monetary environmental impacts on earthwork construction. The study then uses an Improved Weight Decision Method (IWDM) to determine the weight of variables in order to find the best performed equipment configuration. The authors expect that the findings of the study will contribute to the research and practice in configuring earthwork equipment, taking into account associated environmental impacts as well as time and costs.

Keywords

Earthwork; Environmental Impact Analysis; Sustainable Development; Production Scheduling; Cost Analysis; Earthwork Equipment; Environmental Impacts; Equipment Configuration; Improved Weight Decision Method (iwdm); Construction Activities; Construction Costs; Construction Firms; Construction Sectors; Cost And Schedule; Decision Method; Public Awareness; Construction Equipment; Construction Industry; Excavation; Foundations; 0

Is There a Limit to Bioretention Effectiveness? Evaluation of Stormwater Bioretention Treatment Using a Lumped Urban Ecohydrologic Model and Ecologically Based Design Criteria

Wright, Olivia M.; Istanbulluoglu, Erkan; Horner, Richard R.; Degasperi, Curtis L.; Simmonds, Jim. (2018). Is There a Limit to Bioretention Effectiveness? Evaluation of Stormwater Bioretention Treatment Using a Lumped Urban Ecohydrologic Model and Ecologically Based Design Criteria. Hydrological Processes, 32(15), 2318 – 2334.

View Publication

Abstract

In this study, we developed the urban ecohydrology model (UEM) to investigate the role of bioretention on watershed water balance, runoff production, and streamflow variability. UEM partitions the land surface into pervious, impervious, and bioretention cell fractions. Soil moisture and vegetation dynamics are simulated in pervious areas and bioretention cells using a lumped ecohydrological approach. Bioretention cells receive runoff from a fraction of impervious areas. The model is calibrated in an urban headwater catchment near Seattle, WA, USA, using hourly weather data and streamflow observations for 3years. The calibrated model is first used to investigate the relationship between streamflow variability and bioretention cell size that receives runoff from different values of impervious area in the watershed. Streamflow variability is quantified by 2 indices, high pulse count (HPC), which quantifies the number of flow high pulses in a water year above a threshold, and high pulse range (HPR), which defines the time over which the pulses occurred. Low values of these indices are associated with improved stream health. The effectiveness of the modelled bioretention facilities are measured by their influence on reducing HPC and HPR and on flow duration curves in comparison with modelled fully forested conditions. We used UEM to examine the effectiveness of bioretention cells under rainfall regimes that are wetter and drier than the study area in an effort to understand linkages between the degree of urbanization, climate, and design bioretention cell size to improve inferred stream health conditions. In all model simulations, limits to the reduction of HPC and HPR indicators were reached as the size of bioretention cells grew. Bioretention was more effective as the rainfall regime gets drier. Results may guide bioretention design practices and future studies to explore climate change impacts on bioretention design and management.

Keywords

Performance Assessment; Hydrologic Alteration; Automated Techniques; Management-practices; Land-cover; Streams; Water; Impact; Area; Runoff; Bioretention; Ecohydrology; Green Infrastructure; Stormwater; Stream Health; Urban Hydrology; Evaluation; Urbanization; Watersheds; Soil Moisture; Water Balance; Stream Flow; Design; Variability; Ecological Monitoring; Computer Simulation; Storms; Climate Change; Duration; Water Runoff; Flow Duration Curves; Flow Duration; Cell Size; Soils; Duration Curves; Rainfall; Rivers; Cells; Headwaters; Surface Runoff; Dynamics; Rainfall Regime; Catchment Area; Design Criteria; Environmental Impact; Retention Basins; Soil Dynamics; Stream Discharge; Climatic Changes; Meteorological Data; Headwater Catchments

Blue Seattle: Immanent Ethics and Contemporary Urbanisation

Harris, Keith. (2020). Blue Seattle: Immanent Ethics and Contemporary Urbanisation. Area, 52(2), 273 – 281.

View Publication

Abstract

This paper asserts that critical investigations into the urbanisation process should consider the actually existing ethics of the process itself, without defaulting to transcendent normative principles. Grounded in an ontology of immanence, as presented in Deleuze and Guattari's (9) political philosophy, I argue that attention must be paid to the production and transformation of normativity. Using the redevelopment of the South Lake Union (SLU) neighbourhood of Seattle - (in)famously home to Amazon, but largely envisioned and developed by Paul Allen's investment and philanthropic organisation, Vulcan - as an analytical starting point, this paper sketches out a profile of the blue dimension of the genesis of Seattle's environmental ethic, from early efforts to reshape the region's hydrology and address water pollution in Lake Washington, through efforts by governmental bodies and Vulcan to protect water quality and salmon habitat, and on to a large-scale infrastructure project - the Elliott Bay Seawall replacement - that includes features to enhance biodiversity and ecological functioning in the nearshore environment. In tracking these movements, I identify the emergence of an explicitly post-anthropocentric ethic from what initially appears as an aesthetic concern, while also highlighting the ongoing complexification of an earlier engineering ethic that dates back to the earliest attempts by settlers to manage the natural environment.

Keywords

Water Pollution; Urbanization; Water Quality; Ethics; Political Philosophy; Home Ownership; Seattle (wash.); Blue Space; Deleuze And Guattari; Immanence; Post-anthropocentrism; Seattle; Allen, Paul, 1953-2018; Deleuze; Post-anthropocentrism