Skip to content

Selection of Wearable Sensor Measurements for Monitoring and Managing Entry-level Construction Worker Fatigue: A Logistic Regression Approach

Lee, Wonil; Lin, Ken-yu; Johnson, Peter W.; Seto, Edmund Y.w. (2022). Selection of Wearable Sensor Measurements for Monitoring and Managing Entry-level Construction Worker Fatigue: A Logistic Regression Approach. Engineering Construction & Architectural Management (09699988), 29(8), 2905-2923.

View Publication

Abstract

Purpose: The identification of fatigue status and early intervention to mitigate fatigue can reduce the risk of workplace injuries. Off-the-shelf wearable sensors capable of assessing multiple parameters are available. However, using numerous variables in the fatigue prediction model can elicit data issues. This study aimed at identifying the most relevant variables for measuring occupational fatigue among entry-level construction workers by using common wearable sensor technologies, such as electrocardiogram and actigraphy sensors. Design/methodology/approach: Twenty-two individuals were assigned different task workloads in repeated sessions. Stepwise logistic regression was used to identify the most parsimonious fatigue prediction model. Heart rate variability measurements, standard deviation of NN intervals and power in the low-frequency range (LF) were considered for fatigue prediction. Fast Fourier transform and autoregressive (AR) analysis were employed as frequency domain analysis methods. Findings: The log-transformed LF obtained using AR analysis is preferred for daily fatigue management, whereas the standard deviation of normal-to-normal NN is useful in weekly fatigue management. Research limitations/implications: This study was conducted with entry-level construction workers who are involved in manual material handling activities. The findings of this study are applicable to this group. Originality/value: This is the first study to investigate all major measures obtainable through electrocardiogram and actigraphy among current mainstream wearables for monitoring occupational fatigue in the construction industry. It contributes knowledge on the use of wearable technology for managing occupational fatigue among entry-level construction workers engaged in material handling activities. [ABSTRACT FROM AUTHOR]; Copyright of Engineering Construction & Architectural Management (09699988) is the property of Emerald Publishing Limited and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Keywords

Construction Workers; Wearable Technology; Logistic Regression Analysis; Fatigue (physiology); Frequency-domain Analysis; Heart Beat; Lifting & Carrying (human Mechanics); Construction Safety; Information And Communication Technology (ict) Applications; Management; Technology

Spatiotemporal Crime Patterns across Six US Cities: Analyzing Stability and Change in Clusters and Outliers

Walter, Rebecca J.; Tillyer, Marie Skubak; Acolin, Arthur. (2022). Spatiotemporal Crime Patterns across Six US Cities: Analyzing Stability and Change in Clusters and Outliers. Journal Of Quantitative Criminology.

View Publication

Abstract

ObjectivesExamine the degree of crime concentration at micro-places across six large cities, the spatial clustering of high and low crime micro-places within cities, the presence of outliers within those clusters, and extent to which there is stability and change in micro-place classification over time. MethodsUsing crime incident data gathered from six U.S. municipal police departments (Chicago, Los Angeles, New York City, Philadelphia, San Antonio, and Seattle) and aggregated to the street segment, Local Moran’s I is calculated to identify statistically significant high and low crime clusters across each city and outliers within those clusters that differ significantly from their local spatial neighbors.ResultsWithin cities, the proportion of segments that are like their neighbors and fall within a statistically significant high or low crime cluster are relatively stable over time. For all cities, the largest proportion of street segments fell into the same classification over time (47.5% to 69.3%); changing segments were less common (4.7% to 20.5%). Changing clusters (i.e., segments that fell into both low and high clusters during the study) were rare. Outliers in each city reveal statistically significant street-to-street variability. ConclusionsThe findings revealed similarities across cities, including considerable stability over time in segment classification. There were also cross-city differences that warrant further investigation, such as varying levels of spatial clustering. Understanding stable and changing clusters and outliers offers an opportunity for future research to explore the mechanisms that shape a city's spatiotemporal crime patterns to inform strategic resource allocation at smaller spatial scales. (PsycInfo Database Record (c) 2022 APA, all rights reserved)

Keywords

Micro-places; Spatiotemporal Crime Patterns; Spatial Clusters; Spatial Outliers; No Terms Assigned

Using Open Data and Open-source Software to Develop Spatial Indicators of Urban Design and Transport Features for Achieving Healthy and Sustainable Cities

Boeing, Geoff; Higgs, Carl; Liu, Shiqin; Giles-corti, Billie; Sallis, James F.; Cerin, Ester; Lowe, Melanie; Adlakha, Deepti; Hinckson, Erica; Moudon, Anne Vernez; Salvo, Deborah; Adams, Marc A.; Barrozo, Ligia, V; Bozovic, Tamara; Delclos-alio, Xavier; Dygryn, Jan; Ferguson, Sara; Gebel, Klaus; Thanh Phuong Ho; Lai, Poh-chin; Martori, Joan C.; Nitvimol, Kornsupha; Queralt, Ana; Roberts, Jennifer D.; Sambo, Garba H.; Schipperijn, Jasper; Vale, David; Van De Weghe, Nico; Vich, Guillem; Arundel, Jonathan. (2022). Using Open Data and Open-source Software to Develop Spatial Indicators of Urban Design and Transport Features for Achieving Healthy and Sustainable Cities. Lancet Global Health, 10(6), E907-E918.

View Publication

Abstract

Benchmarking and monitoring of urban design and transport features is crucial to achieving local and international health and sustainability goals. However, most urban indicator frameworks use coarse spatial scales that either only allow between-city comparisons, or require expensive, technical, local spatial analyses for within-city comparisons. This study developed a reusable, open-source urban indicator computational framework using open data to enable consistent local and global comparative analyses. We show this framework by calculating spatial indicators-for 25 diverse cities in 19 countries-of urban design and transport features that support health and sustainability. We link these indicators to cities' policy contexts, and identify populations living above and below critical thresholds for physical activity through walking. Efforts to broaden participation in crowdsourcing data and to calculate globally consistent indicators are essential for planning evidence-informed urban interventions, monitoring policy effects, and learning lessons from peer cities to achieve health, equity, and sustainability goals.

Keywords

Systems; Access; Care

What Next? Expanding Our View of City Planning and Global Health, and Implementing and Monitoring Evidence-informed Policy

Giles-corti, Billie; Moudon, Anne Vernez; Lowe, Melanie; Cerin, Ester; Boeing, Geoff; Frumkin, Howard; Salvo, Deborah; Foster, Sarah; Kleeman, Alexandra; Bekessy, Sarah; De Sa, Thiago Herick; Nieuwenhuijsen, Mark; Higgs, Carl; Hinckson, Erica; Adlakha, Deepti; Arundel, Jonathan; Liu, Shiqin; Oyeyemi, Adewale L.; Nitvimol, Kornsupha; Sallis, James F. (2022). What Next? Expanding Our View of City Planning and Global Health, and Implementing and Monitoring Evidence-informed Policy. Lancet Global Health, 10(6), E919-E926.

View Publication

Abstract

This Series on urban design, transport, and health aimed to facilitate development of a global system of health-related policy and spatial indicators to assess achievements and deficiencies in urban and transport policies and features. This final paper in the Series summarises key findings, considers what to do next, and outlines urgent key actions. Our study of 25 cities in 19 countries found that, despite many well intentioned policies, few cities had measurable standards and policy targets to achieve healthy and sustainable cities. Available standards and targets were often insufficient to promote health and wellbeing, and health-supportive urban design and transport features were often inadequate or inequitably distributed. City planning decisions affect human and planetary health and amplify city vulnerabilities, as the COVID-19 pandemic has highlighted. Hence, we offer an expanded framework of pathways through which city planning affects health, incorporating 11 integrated urban system policies and 11 integrated urban and transport interventions addressing current and emerging issues. Our call to action recommends widespread uptake and further development of our methods and open-source tools to create upstream policy and spatial indicators to benchmark and track progress; unmask spatial inequities; inform interventions and investments; and accelerate transitions to net zero, healthy, and sustainable cities.

Lingzi Wu

Lingzi Wu is an Assistant Professor with the Department of Construction Management (CM) at the University of Washington (UW). Prior to joining UW in September 2022, Dr. Wu served as a postdoctoral fellow in the Department of Civil and Environmental Engineering at University of Alberta, where she received her MSc and PhD in Construction Engineering and Management in 2013 and 2020 respectively. Prior to her PhD, Dr. Wu worked in the industrial construction sector as a project coordinator with PCL Industrial Management from 2013 to 2017.

An interdisciplinary scholar focused on advancing digital transformation in construction, Dr. Wu’s current research interests include (1) integration of advanced data analytics and complex system modeling to enhance construction practices and (2) development of human-in-the-loop decision support systems to improve construction performance (e.g., sustainability and safety). Dr. Wu has published 10 papers in top journals and conference proceedings, including the Journal of Construction Engineering and Management, Journal of Computing in Civil Engineering, and Automation in Construction. Her research and academic excellence has received notable recognition, including a “Best Paper Award” at the 17th International Conference on Modeling and Applied Simulation, and the outstanding reviewer award from the Journal of Construction Engineering and Management.

As an educator and mentor, Dr. Wu aims to create an inclusive, innovative, and interactive learning environment where students develop personal, technical, and transferable skills to grow today, tomorrow, and into the future.

A Neighborhood Wealth Metric for Use in Health Studies

Moudon, Anne Vernez; Cook, Andrea J.; Ulmer, Jared; Hurvitz, Philip M.; Drewnowski, Adam. (2011). A Neighborhood Wealth Metric for Use in Health Studies. American Journal Of Preventive Medicine, 41(1), 88 – 97.

View Publication

Abstract

Background: Measures of neighborhood deprivation used in health research are typically based on conventional area-based SES. Purpose: The aim of this study is to examine new data and measures of SES for use in health research. Specifically, assessed property values are introduced as a new individual-level metric of wealth and tested for their ability to substitute for conventional area-based SES as measures of neighborhood deprivation. Methods: The analysis was conducted in 2010 using data from 1922 participants in the 2008-2009 survey of the Seattle Obesity Study (SOS). It compared the relative strength of the association between the individual-level neighborhood wealth metric (assessed property values) and area-level SES measures (including education, income, and percentage above poverty as single variables, and as the composite Singh index) on the binary outcome fair/poor general health status. Analyses were adjusted for gender, categoric age, race, employment status, home ownership, and household income. Results: The neighborhood wealth measure was more predictive of fair/poor health status than area-level SES measures, calculated either as single variables or as indices (lower DIC measures for all models). The odds of having a fair/poor health status decreased by 0.85 (95% CI=0.77, 0.93) per $50,000 increase in neighborhood property values after adjusting for individual-level SES measures. Conclusions: The proposed individual-level metric of neighborhood wealth, if replicated in other areas, could replace area-based SES measures, thus simplifying analyses of contextual effects on health. (Am J Prev Med 2011; 41(1): 88-97) (C) 2011 American Journal of Preventive Medicine

Keywords

Health -- Social Aspects; Social Status; Public Health Research; Home Ownership; Income; Real Property; Deprivation (psychology); Health Education; Disparities Geocoding Project; Body-mass Index; Socioeconomic-status; Ecological Fallacy; Built Environment; Deprivation Indexes; Multilevel Analysis; Individual-level; Social-class; Inequalities

The Built Environment and Utilitarian Walking in Small U.S. Towns

Doescher, Mark P.; Lee, Chanam; Berke, Ethan M.; Adachi-mejia, Anna M.; Lee, Chun-kuen; Stewart, Orion; Patterson, Davis G.; Hurvitz, Philip M.; Carlos, Heather A.; Duncan, Glen E.; Moudon, Anne Vernez. (2014). The Built Environment and Utilitarian Walking in Small U.S. Towns. Preventive Medicine, 69, 80 – 86.

View Publication

Abstract

Objectives. The role of the built environment on walking in rural United States (U.S.) locations is not well characterized. We examined self-reported and measured built environment correlates of walking for utilitarian purposes among adult residents of small rural towns. Methods. In 2011-12, we collected telephone survey and geographic data from 2152 adults in 9 small towns from three U.S. regions. We performed mixed-effects logistic regression modeling to examine relationships between built environment measures and utilitarian walking (any versus none; high [>= 150 min per week] versus low [<150 min per week]) to retail, employment and public transit destinations. Results. Walking levels were lower than those reported for populations living in larger metropolitan areas. Environmental factors significantly (p < 0.05) associated with higher odds of utilitarian walking in both models included self-reported presence of crosswalks and pedestrian signals and availability of park/natural recreational areas in the neighborhood, and also objectively measured manufacturing land use. Conclusions. Environmental factors associated with utilitarian walking in cities and suburbs were important in small rural towns. Moreover, manufacturing land use was associated with utilitarian walking. Modifying the built environment of small towns could lead to increased walking in a sizeable segment of the U.S. population. (C) 2014 Elsevier Inc. All rights reserved.

Keywords

Cities & Towns -- Environmental Conditions; Walking; Telephone Surveys; Logistic Regression Analysis; Public Transit; Cities & Towns; Rural Conditions; United States; Exercise/physical Activity; Health Promotion; Physical Environment; Prevention; Rural Health; Social Environment; Physical-activity; Postmenopausal Women; Adults; Health; Risk; Transportation; Associations; Neighborhood; Travel; Determinants

Residential Property Values Predict Prevalent Obesity but Do Not Predict 1-year Weight Change

Drewnowski, Adam; Aggarwal, Anju; Tang, Wesley; Moudon, Anne Vernez. (2015). Residential Property Values Predict Prevalent Obesity but Do Not Predict 1-year Weight Change. Obesity, 23(3), 671 – 676.

View Publication

Abstract

ObjectiveLower socio economic status (SES) has been linked with higher obesity rates but not with weight gain. This study examined whether SES can predict short-term weight change. MethodsThe Seattle Obesity Study II was based on an observational cohort of 440 adults. Weights and heights were measured at baseline and at 1 year. Self-reported education and incomes were obtained by questionnaire. Home addresses were linked to tax parcel property values from the King County, Washington, tax assessor. Associations among SES variables, prevalent obesity, and 1-year weight change were examined using multivariable linear regressions. ResultsLow residential property values at the tax parcel level predicted prevalent obesity at baseline and at 1 year. Living in the top quartile of house prices reduced obesity risk by 80% at both time points. At 1 year, about 38% of the sample lost >1 kg body weight; 32% maintained ( 1 kg); and 30% gained >1 kg. In adjusted models, none of the baseline SES measures had any impact on 1-year weight change. ConclusionsSES variables, including tax parcel property values, predicted prevalent obesity but did not predict short-term weight change. These findings, based on longitudinal cohort data, suggest other mechanisms are involved in short-term weight change.

Keywords

Body-mass-index; Socioeconomic-status; United-states; Physical-activity; King County; Association; Health; Trends; Gain; Income

Cross Sectional Association between Spatially Measured Walking Bouts and Neighborhood Walkability

Hwang, Liang-dar; Hurvitz, Philip M.; Duncan, Glen E. (2016). Cross Sectional Association between Spatially Measured Walking Bouts and Neighborhood Walkability. International Journal Of Environmental Research And Public Health, 13(4).

View Publication

Abstract

Walking is the most popular choice of aerobic physical activity to improve health among U.S. adults. Physical characteristics of the home neighborhood can facilitate or hinder walking. The purpose of this study was to quantify neighborhood walking, using objective methods and to examine the association between counts of walking bouts in the home neighborhood and neighborhood walkability. This was a cross-sectional study of 106 adults who wore accelerometers and GPS devices for two weeks. Walking was quantified within 1, 2, and 3 km Euclidean (straight-line) and network buffers around the geocoded home location. Walkability was estimated using a commercially available index. Walking bout counts increased with buffer size and were associated with walkability, regardless of buffer type or size (p < 0.001). Quantification of walking bouts within (and outside) of pre-defined neighborhood buffers of different sizes and types allowed for the specification of walking locations to better describe and elucidate walking behaviors. These data support the concept that neighborhood characteristics can influence walking among adults.

Keywords

Physical-activity; Accelerometer Data; United-states; Urban Form; Land-use; Validation; Health; Transportation; Environments; Intensity; Geographic Information Systems; Residence Characteristics; Twins; Walking

Review of Education-Focused Health Impact Assessments Conducted in the United States

Gase, Lauren N.; Defosset, Amelia R.; Gakh, Maxim; Harris, Celia; Weisman, Susan R.; Dannenberg, Andrew L. (2017). Review of Education-Focused Health Impact Assessments Conducted in the United States. Journal Of School Health, 87(12), 911 – 922.

View Publication

Abstract

BACKGROUNDHealth impact assessment (HIA) provides a structured process for examining the potential health impacts of proposed policies, plans, programs, and projects. This study systematically reviewed HIAs conducted in the United States on prekindergarten, primary, and secondary education-focused decisions. METHODSRelevant HIA reports were identified from web sources in late 2015. Key data elements were abstracted from each report. Four case studies were selected to highlight diversity of topics, methods, and impacts of the assessment process. RESULTSTwenty HIAs completed in 2003-2015 from 8 states on issues related to prekindergarten through secondary education were identified. The types of decisions examined included school structure and funding, transportation to and from school, physical modifications to school facilities, in-school physical activity and nutrition, and school discipline and climate. Assessments employed a range of methods to characterize the nature, magnitude, and severity of potential health impacts. Assessments fostered stakeholder engagement and provided health-promoting recommendations, some of which were subsequently incorporated into school policies. CONCLUSIONSHealth impact assessment is a promising tool that education, health, and other stakeholders can use to maximize the health and well-being of students, families, and communities.

Keywords

Decision Making; Elementary Schools; High Schools; Medical Policy; Medline; Nutrition; Online Information Services; Research Funding; Student Health; Systematic Reviews (medical Research); Search Engines; Physical Activity; Health Impact Assessment; United States; Collaboration; Policy; Public Health; Academic-achievement; Programs