Skip to content

Blockchain-Enabled Supply Chain Coordination for Off-Site Construction Using Bayesian Theory for Plan Reliability

Kim, M., Zhao, X., Kim, Y.-W., & Rhee, B.-D. (2023). Blockchain-enabled supply chain coordination for off-site construction using Bayesian theory for plan reliability. Automation in Construction, 155, 105061–. https://doi.org/10.1016/j.autcon.2023.105061

View Publication

Abstract

The potential of blockchain is being widely explored within the construction industry, particularly for transparent communication and information sharing. However, only limited research has focused on implementing blockchain to address the challenge of aligning conflicting interests among independent agents, specifically, supply chain coordination. This paper develops a blockchain-enabled supply chain coordination system that facilitates the alignment of diverse decisions made by stakeholders in an off-site construction supply chain. To achieve this goal, Bayesian updating is employed to estimate the probabilistic distribution of plan reliability, enabling the calculation of a supplier rebate that incentivizes the contractor to schedule deliveries aimed at minimizing joint supply chain costs. Additionally, the paper describes a blockchain-enabled system that allows practitioners to measure plan reliability. The research findings demonstrate that the blockchain-enabled supply chain coordination system fosters shared common knowledge among project stakeholders and facilitates real-time updates of changes in the contractor's plan reliability, aligning the interests of both the supplier and contractor.

Keywords

Supply chain coordination; Bayesian updating; Plan reliability; Rebate pricing; Blockchain; Smart contracts; Off-site construction

Automated two-dimensional geometric model reconstruction from point cloud data for construction quality inspection and maintenance

Kim, Minju & Lee, Dongmin. (2023). Automated two-dimensional geometric model reconstruction from point cloud data for construction quality inspection and maintenance. Automation in Construction, 154. https://doi.org/10.1016/j.autcon.2023.105024.

View Publication

Abstract

Despite the availability of 3D digital models, 2D floor plans remain extensively used for quality inspection and maintenance as they offer firsthand information. While laser scanners enable efficient capture and reconstruction of real-world scenes, challenges arise in accurately extracting building geometry from laser scanning data due to the loss of geometric features. This paper describes a method for accurately reconstructing 2D geometric drawings of built facilities using laser scanning data. These techniques involve transforming the dimension of 3D data into 2D and displaying the registered data as pixels to extract solid lines that represent wall structures. By employing dimensionality transformation and pixelation techniques, the method supports reliable quality inspection and maintenance processes, overcoming the challenges of extracting precise geometry from laser scanning data. This paper contributes to the automated extraction of geometric features from point clouds and inspires the future development of fully automated 2D CAD and 3D BIM in alignment with Scan-to-BIM.

Brook Waldman

Brook Waldman is a research engineer at the Carbon Leadership Forum, where he investigates the life cycle of building materials — their manufacture, use, and end-of-life  — and the environmental impacts that accompany those processes.  He also studies and aims to improve the methodologies and data behind the measurement and communication of those environmental impacts. At the CLF, he has been particularly involved in supporting the EC3 tool and developing the CLF Material Baselines.

Yang Shen

Yang Shen is a research engineer for the Carbon Leadership Forum at the University of Washington. Before joining CLF, he was a Postdoctoral Research Fellow in George Mason University focusing on multidisciplinary research such as Computer Vision/Deep Learning applications in the Built Environment. Yang got his PhD in Civil Engineering (Structural Engineering) from Texas A&M University. His Ph.D. research was tightly associated with building science, embodied carbon quantification/optimization, building operational energy simulation, parametric modeling, structural analysis, data analytics, and machine learning. He is passionate about using interdisciplinary studies to achieve climate change adaptation and mitigation.

Applicability of Smart Construction Technology: Prioritization and Future Research Directions

Ahn, H., Lee, C., Kim, M., Kim, T., Lee, D., Kwon, W., & Cho, H. (2023). Applicability of smart construction technology: Prioritization and future research directions. Automation in Construction., 153. https://doi.org/10.1016%2Fj.autcon.2023.104953

View Publication

Abstract

The potential for facilitating faster, safer, and more sustainable construction processes through the adoption of smart construction technologies is widely recognized. However, the limited adoption of these technologies in construction projects highlights the significance of identifying the technological needs of major stakeholders and the prioritization of research and development investment. In this study, the quality function deployment technique is employed to extract and prioritize the required technologies (RTs) from various stakeholders, while a thematic literature review is conducted to identify challenges and future research directions. The findings improve the efficiency of resource allocation, allowing policymakers to strategically address pressing issues. This can facilitate collaboration and communication among researchers, stakeholders, and the wider community, fostering a shared vision and understanding of future research goals and outcome. Prioritizing smart construction technologies can enhance their applicability. The top nine of technologies were prioritized by using quality function deployment. Thematic review was conducted for each of the top nine technologies. The challenges and future research directions were presented by review.

Keywords

Fourth industrial revolution (4IR); Prioritization; Quality function deployment (QFD); Smart construction technologies; Technology innovation

Detecting Subpixel Human Settlements in Mountains Using Deep Learning: A Case of the Hindu Kush Himalaya 1990–2020

Chen, T.-H. K., Pandey, B., & Seto, K. C. (2023). Detecting subpixel human settlements in mountains using deep learning: A case of the Hindu Kush Himalaya 1990–2020. Remote Sensing of Environment, 294, 113625–. https://doi.org/10.1016/j.rse.2023.113625

View Publication

Abstract

The majority of future population growth in mountains will occur in small- and medium-sized cities and towns and affect vulnerable ecosystems. However, mountain settlements are often omitted from global land cover analyses due to the low spatial resolution of satellite images, which cannot resolve the small scale of mountains settlements. This study demonstrates, for the first time, the potential of deep learning to detect human settlements in mountains at the sub-pixel level, based on Landsat satellite imagery. We hypothesized that adding spatial and temporal features could improve the detection of mountain settlements since spectral information alone led to inaccurate results. For spatial features, we compared a U-shaped neural network (U-Net), a deep learning algorithm that automatically learns spatial features, with a simple random forest (RF) algorithm. Then, we assessed whether temporal features would increase accuracy by comparing two input datasets, multispectral imagery and temporal features from the Continuous Change Detection and Classification (CCDC) algorithm. We evaluated each method by calculating the accuracies of (1) the binary settlement footprint, (2) the subpixel estimates of impervious surfaces, and (3) urban growth. We tested the accuracies using visually interpreted datasets from time-series Google Earth images across the Hindu Kush Himalaya that were not used for training to evaluate model transferability. The U-Net successfully improved mountain settlement mapping compared to the random forest, with a substantial discrepancy in small settlements. The time-series results from the U-Net successfully captured long-term urban growth but fewer short-term changes. Contrary to expectations, the CCDC temporal features reduced the accuracy of mountain settlement mapping due to frequent cloud cover in hilly areas. Our subpixel analysis reveals that the built-up area of the Hindu Kush Himalaya has expanded at a rate of 61 km2 per year from 1990 to 2020, which is about twice the estimate of the Global Human Settlement Layer using binary urban/non-urban classifications.

Keywords

Urban land cover; Land cover fraction; Peri-urban; Built-up area; Subpixel mapping; Machine learning; Time-series; Himalaya; CCDC

Urban Infrastructure Lab Report on High-Speed Rail

The Urban Infrastructure Lab researchers have released a report on a Cascadia region high-speed rail project. College of Built Environments faculty Jan Whittington and Qing Shen were authors on the report, along with 3 Interdisciplinary Ph.D. in Urban Design and Planning students (Siman Ning, Haoyu Yue, and Chin-Wei Chen), and a Master of Urban Planning candidate (Richard McMichael). This report examines the successes and lessons learned from existing high-speed rail projects in Europe and Asia, including 50 hours of interviews…

Campus Sustainability Fund selects College of Built Environments researchers for 2022-2023 work

The Campus Sustainability Fund selected College of Built Environments PhD student Daniel Dimitrov, along with Associate Dean for Research Carrie Sturts Dossick, to receive funding for the project described below. Energy, Information, and the New Work of Building Operations in the Digital Age Amount Awarded: $19,833 Funding Received: 2022-2023 Project Summary: The built environment industry is in the midst of a data revolution paired with a drive for sustainable campus operations. Innovation, information, communication access, and integration provide an opportunity…

Don’t take concrete for granite: the secret research life of CBE Department of Construction Management Assistant Professor and concrete materials researcher Fred Aguayo

Concrete can sequester carbon, and the cement that glues its components together has been used since antiquity. Now, CBE professor Fred Aguayo is introducing students to the complex world of concrete research.

Selection of Wearable Sensor Measurements for Monitoring and Managing Entry-Level Construction Worker Fatigue: a Logistic Regression Approach

Lee, Wonil; Lin, Ken-Yu; Johnson, Peter W.; Seto, Edmund Y.W. (2022). Selection of Wearable Sensor Measurements for Monitoring and Managing Entry-Level Construction Worker Fatigue: a Logistic Regression Approach. Engineering, Construction, and Architectural Management, 29(8), 2905–23.

View Publication

Abstract

The identification of fatigue status and early intervention to mitigate fatigue can reduce the risk of workplace injuries. Off-the-shelf wearable sensors capable of assessing multiple parameters are available. However, using numerous variables in the fatigue prediction model can elicit data issues. This study aimed at identifying the most relevant variables for measuring occupational fatigue among entry-level construction workers by using common wearable sensor technologies, such as electrocardiogram and actigraphy sensors.

Keywords

Technology, management, construction safety, information and communication technology (ICT) applications