Skip to content

Professional Real Estate Development – The ULI Guide to the Business, 4th Edition

Dermisi, S. (2023). Office Development. In R. Peiser & D. Hamilton (Eds.), Professional Real Estate Development: The ULI Guide to the Business. Urban Land Institute.

View Publication

Abstract

The office chapter, authored by Dr. Sofia Dermisi -Lyon and Wolff Endowed Professor in Real Estate and Professor of Urban Design & Planning, identifies ways the technological and structural sustainability boundaries are pushed and how the pandemic has shifted the office occupant expectations on health and well-being, while embracing alternative ways of working through flexibility and adaptability. Office case studies highlight creative ways of linking new with historic landmark structures, overcoming various development challenges, and integrating valuable features in a post-covid era. Additionally, the evolution and repositioning of retail due to the rise of e-commerce and its impact on brick-and-mortar stores provides insights on future trends. While consumer behavior trends, which accelerated during the pandemic, created the emergence of new types of industrial facilities.

Digital Governance in Rural Chengdu, China: Its Potential for Social-ecological Resilience

Wu, Shuang, Abramson, Daniel B., & Zhong, Bo. (2022). Digital Governance in Rural Chengdu, China: Its Potential for Social-ecological Resilience. Frontiers in Sustainable Cities, 4.

View Publication

Abstract

In this study, we echo the call from the UN to interpret Sustainable Development Goals (SDGs) in their regional context—in this case, the linpan (wooded lot) landscape of the Chengdu Plain, in Sichuan, China, where the shocks and stresses of recent, rapid administrative-economic urbanization are testing the resilience of some of the world's most sustainably productive and long- and densely-settled agrarian environments. In recent years, fine-grained information and communications technology (ICT) governance tools in Chengdu, such as “grid management”, present opportunities to sustain and scale up the collection of data necessary to validate and refine indicators of landscape resilience, and use them to regulate development, in accordance with SDG goal 11 to enhance legislation, governance, and capacity via information gathering and sharing. ICT-based governance in combination with traditional place-based knowledge can play a critical role in ensuring the resilience of urban-rural co-development. To realize this potential, however, ICT-enabled governance needs to incorporate greater transparency and more local feedback loops and enable greater participation from older farmers and women, to inform household and community-level land-use choices and initiatives. It also needs to link regulatory functions with marketing and pricing functions so that farmers may benefit from the sustainable practices they are encouraged to adopt.

 

Use of Predictive Models for Labor-Productivity Loss in Settling Disputes

Ottesen, Jeffrey L., & Migliaccio, Giovanni (2023). Use of Predictive Models for Labor-Productivity Loss in Settling Disputes. Journal of Legal Affairs and Dispute Resolution in Engineering and Construction, 15(1).

View Publication

Abstract

Given inherent difficulties in construction, optimizing labor efficiencies is paramount to project success. Research described in this article conducted demonstrates that an analysis of planned activities in a critical path methodology (CPM) schedule may be used to forecast future productivity inefficiencies. Specifically, this study relies on the concept of CPM schedule’s density, which is defined as the number of overlapping like-trade activities on any given workday. This metric is directly related to the required labor resources required to complete that work within the activities’ planned durations. Schedule density increases where more planned activities overlap with each other; for instance, occurrence of such increases is common when the schedule is accelerated. Regression models were derived using metrics drawn from CPM schedule updates’ activities and durations and compared to actual labor productivity experienced. Strong correlation findings support development of predictive models that quantify potential labor inefficiencies before they occur. However, the question remains as to the strength and applicability of predictive models in formal litigation. This paper presents findings of this research and discusses how such findings may be used to facilitate settlement in dispute resolution procedures.

Keywords

Emergent Subcontracting Models in the US Construction Industry

Migliaccio, Giovanni C., Gebken, Richard J., Fernandez, Luis R., & Osmanbhoy, Natasha (2022). Emergent Subcontracting Models in the US Construction Industry. Journal of Legal Affairs and Dispute Resolution in Engineering and Construction, 14(4).

View Publication

Abstract

Prime contracting models for engineering and construction projects are described extensively in the literature, but models between prime contractors and subcontractors are less well known. This study examined the established and evolving subcontracting models in the US construction industry to not only document their utilization but also investigate their advantages and disadvantages when employed. The research followed a two-phase/two-step approach. During Phase 1, the authors completed a regionally based study to identify subcontracting practices in the Pacific Northwest. As part of Phase 2, the study was expanded across the United States to gain a greater understanding of each of the identified subcontracting models, including advantages, disadvantages, and variations. Both phases were organized into two steps: (1) an online survey instrument was sent to professionals with either general or specialty contracting firms, and (2) follow-up semistructured interviews were conducted with selected survey respondents to better evaluate each subcontracting model. The authors found that five subcontracting models address the most common scenarios and the characteristics of each are familiar to the nationwide participant sample. There are subtle variations to the main five models that are being employed to varying degrees across the country. The impetus for these variations appears to be founded on the need to find better contractual arrangements and that subcontracting practices are dynamic by nature. Although most of the participants were from western and central divisions of the US Census Bureau geographical classification, participants from all geographic areas participated in the study. Increasing knowledge on how project delivery systems may affect disputes and claims or conflicts and legal issues of procurement systems, this article uniquely contributes to defining a taxonomy of subcontracting models while giving insights into the current and emerging trends in subcontracting practices, including how subcontractors are integrated into a project team.

Plywood on steroids: CBE experiments with building materials for a sustainable future

Complex structures jointed like origami. Office walls and ceilings that swoop and bend over enormous open spaces. Experimental pavilions made with robotic fabrication techniques. This is a world of architecture made possible by mass-timber framing. And, it’s a world that’s becoming more environmentally and acoustically sound through the work of UW College of Built Environments, Department of Architecture Assistant Professor Tomás Méndez Echenagucia, UW Master of Science in Architecture/Design Technology student Nathan Brown, and other collaborators. Mass timber is a…

Experimental Investigations and Empirical Modeling of Rubber Wear on Concrete Pavement

Emami, Anahita; Sah, Hos Narayan; Aguayo, Federico; Khaleghian, Seyedmeysam. (2022). Experimental Investigations and Empirical Modeling of Rubber Wear on Concrete Pavement. Journal of Engineering Tribology.

View Publication

Abstract

Material loss due to wear plays a key role in the service life of rubber components in various tribological applications, such as tires, shoe soles, wiper blades, to name a few. It also adversely affects energy consumption, economy, and CO2 emissions around the globe. Therefore, understanding and modeling the wear behavior of rubbers are important in the design of economic and environment-friendly rubber compounds. In this study, we investigated the effect of normal load and sliding velocity on the wear rate of rubber compounds widely used in the tire treads and evaluated the wear models previously proposed for rubbers to determine the best model to predict the rubber wear rate. The sliding wear rates of different types of Styrene-Butadiene Rubber (SBR) and Isoprene Rubber (IR) compounds on a broom finish concrete slab were measured for different sliding velocities and normal loads. The experimental results were used to evaluate and discuss different wear models proposed in the literature. A new empirical model was proposed to predict the wear rate by considering mechanical properties associated with rubber wear. The experimental results revealed that the wear rate of rubber compounds non-linearly depends on the normal load or friction force, while the effect of sliding velocity on the wear rate is not significant in the 20–100 mm/s range. Moreover, traces of both mechanical (abrasion) and chemical (smearing) wear were observed on all rubber compounds.

Keywords

Tire tread compounds, rubber wear, rubber-concrete interaction, smearing wear and abrasion, wear model

Coefficient of Thermal Expansion of Concrete Produced with Recycled Concrete Aggregates

Okechi, Ikechukwu K.; Aguayo, Federico; Torres, Anthony. (2022). Coefficient of Thermal Expansion of Concrete Produced with Recycled Concrete Aggregates. Journal of Civil Engineering and Construction, 11(2), 65-74.

View Publication

Abstract

This study presents a comparison between the coefficient of thermal expansion (CTE) of concrete produced with natural aggregate and that of concrete produced with recycled concrete aggregate. In order to achieve this, natural aggregate concrete (NAC) specimens were produced, tested, then crushed and sieved in the laboratory to obtain recycled concrete aggregates, which was then used in the production of recycled aggregate concrete (RAC) specimens. The RAC samples were then tested and compared to the NAC samples. The CTE testing was carried out using a AFTC2 CTE measurement system produced by Pine Instrument Company. In addition to CTE testing, the water absorption, specific gravity, and unit weight of the aggregates was determined. A vacuum impregnation procedure was used for the water absorption test. The recycled aggregate properties showed a significantly higher absorption capacity than that of the natural aggregates, while the unit weight and specific gravity of the recycled aggregate were lower than that of the natural aggregates. The average CTE results showed that both the NAC and the RAC samples expanded similarly. The results show that the CTE of RAC depends on the natural aggregate used in the NAC, which was recycled to produce the RAC. Also, there was no significant difference between the average CTE values of the RAC and that of NAC that could discredit the use of recycled aggregate in concrete.

Keywords

Coefficient of thermal expansion; Recycled concrete aggregate; Natural concrete aggregate.

Immersive VR Versus BIM for AEC Team Collaboration in Remote 3D Coordination Processes

Asl, Bita Astaneh; Dossick, Carrie Sturts. (2022). Immersive VR Versus BIM for AEC Team Collaboration in Remote 3D Coordination Processes. Buildings, 12(10).

View Publication

Abstract

Building Information Modeling (BIM) and Virtual Reality (VR) are both tools for collaboration and communication, yet questions still exist as to how and in what ways these tools support technical communication and team decision-making. This paper presents the results of an experimental research study that examined multidisciplinary Architecture, Engineering, and Construction (AEC) team collaboration efficiency in remote asynchronous and synchronous communication methods for 3D coordination processes by comparing BIM and immersive VR both with markup tools. Team collaboration efficiency was measured by Shared Understanding, a psychological method based on Mental Models. The findings revealed that the immersive experience in VR and its markup tool capabilities, which enabled users to draw in a 360-degree environment, supported team communication more than the BIM markup tool features, which allowed only one user to draw on a shared 2D screenshot of the model. However, efficient team collaboration in VR required the members to properly guide each other in the 360-degree environment; otherwise, some members were not able to follow the conversations.

Keywords

Mental Models; Virtual-reality; Performance; Virtual Reality (vr); Building Information Modeling (bim); 3d Coordination; Clash Resolution; Remote Collaboration; Multidisciplinary Aec Team

Selection of Wearable Sensor Measurements for Monitoring and Managing Entry-level Construction Worker Fatigue: A Logistic Regression Approach

Lee, Wonil; Lin, Ken-yu; Johnson, Peter W.; Seto, Edmund Y.w. (2022). Selection of Wearable Sensor Measurements for Monitoring and Managing Entry-level Construction Worker Fatigue: A Logistic Regression Approach. Engineering Construction & Architectural Management (09699988), 29(8), 2905-2923.

View Publication

Abstract

Purpose: The identification of fatigue status and early intervention to mitigate fatigue can reduce the risk of workplace injuries. Off-the-shelf wearable sensors capable of assessing multiple parameters are available. However, using numerous variables in the fatigue prediction model can elicit data issues. This study aimed at identifying the most relevant variables for measuring occupational fatigue among entry-level construction workers by using common wearable sensor technologies, such as electrocardiogram and actigraphy sensors. Design/methodology/approach: Twenty-two individuals were assigned different task workloads in repeated sessions. Stepwise logistic regression was used to identify the most parsimonious fatigue prediction model. Heart rate variability measurements, standard deviation of NN intervals and power in the low-frequency range (LF) were considered for fatigue prediction. Fast Fourier transform and autoregressive (AR) analysis were employed as frequency domain analysis methods. Findings: The log-transformed LF obtained using AR analysis is preferred for daily fatigue management, whereas the standard deviation of normal-to-normal NN is useful in weekly fatigue management. Research limitations/implications: This study was conducted with entry-level construction workers who are involved in manual material handling activities. The findings of this study are applicable to this group. Originality/value: This is the first study to investigate all major measures obtainable through electrocardiogram and actigraphy among current mainstream wearables for monitoring occupational fatigue in the construction industry. It contributes knowledge on the use of wearable technology for managing occupational fatigue among entry-level construction workers engaged in material handling activities. [ABSTRACT FROM AUTHOR]; Copyright of Engineering Construction & Architectural Management (09699988) is the property of Emerald Publishing Limited and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Keywords

Construction Workers; Wearable Technology; Logistic Regression Analysis; Fatigue (physiology); Frequency-domain Analysis; Heart Beat; Lifting & Carrying (human Mechanics); Construction Safety; Information And Communication Technology (ict) Applications; Management; Technology

Using Open Data and Open-source Software to Develop Spatial Indicators of Urban Design and Transport Features for Achieving Healthy and Sustainable Cities

Boeing, Geoff; Higgs, Carl; Liu, Shiqin; Giles-corti, Billie; Sallis, James F.; Cerin, Ester; Lowe, Melanie; Adlakha, Deepti; Hinckson, Erica; Moudon, Anne Vernez; Salvo, Deborah; Adams, Marc A.; Barrozo, Ligia, V; Bozovic, Tamara; Delclos-alio, Xavier; Dygryn, Jan; Ferguson, Sara; Gebel, Klaus; Thanh Phuong Ho; Lai, Poh-chin; Martori, Joan C.; Nitvimol, Kornsupha; Queralt, Ana; Roberts, Jennifer D.; Sambo, Garba H.; Schipperijn, Jasper; Vale, David; Van De Weghe, Nico; Vich, Guillem; Arundel, Jonathan. (2022). Using Open Data and Open-source Software to Develop Spatial Indicators of Urban Design and Transport Features for Achieving Healthy and Sustainable Cities. Lancet Global Health, 10(6), E907-E918.

View Publication

Abstract

Benchmarking and monitoring of urban design and transport features is crucial to achieving local and international health and sustainability goals. However, most urban indicator frameworks use coarse spatial scales that either only allow between-city comparisons, or require expensive, technical, local spatial analyses for within-city comparisons. This study developed a reusable, open-source urban indicator computational framework using open data to enable consistent local and global comparative analyses. We show this framework by calculating spatial indicators-for 25 diverse cities in 19 countries-of urban design and transport features that support health and sustainability. We link these indicators to cities' policy contexts, and identify populations living above and below critical thresholds for physical activity through walking. Efforts to broaden participation in crowdsourcing data and to calculate globally consistent indicators are essential for planning evidence-informed urban interventions, monitoring policy effects, and learning lessons from peer cities to achieve health, equity, and sustainability goals.

Keywords

Systems; Access; Care