Skip to content

Immersive VR Versus BIM for AEC Team Collaboration in Remote 3D Coordination Processes

Asl, Bita Astaneh; Dossick, Carrie Sturts. (2022). Immersive VR Versus BIM for AEC Team Collaboration in Remote 3D Coordination Processes. Buildings, 12(10).

View Publication

Abstract

Building Information Modeling (BIM) and Virtual Reality (VR) are both tools for collaboration and communication, yet questions still exist as to how and in what ways these tools support technical communication and team decision-making. This paper presents the results of an experimental research study that examined multidisciplinary Architecture, Engineering, and Construction (AEC) team collaboration efficiency in remote asynchronous and synchronous communication methods for 3D coordination processes by comparing BIM and immersive VR both with markup tools. Team collaboration efficiency was measured by Shared Understanding, a psychological method based on Mental Models. The findings revealed that the immersive experience in VR and its markup tool capabilities, which enabled users to draw in a 360-degree environment, supported team communication more than the BIM markup tool features, which allowed only one user to draw on a shared 2D screenshot of the model. However, efficient team collaboration in VR required the members to properly guide each other in the 360-degree environment; otherwise, some members were not able to follow the conversations.

Keywords

Mental Models; Virtual-reality; Performance; Virtual Reality (vr); Building Information Modeling (bim); 3d Coordination; Clash Resolution; Remote Collaboration; Multidisciplinary Aec Team

Selection of Wearable Sensor Measurements for Monitoring and Managing Entry-level Construction Worker Fatigue: A Logistic Regression Approach

Lee, Wonil; Lin, Ken-yu; Johnson, Peter W.; Seto, Edmund Y.w. (2022). Selection of Wearable Sensor Measurements for Monitoring and Managing Entry-level Construction Worker Fatigue: A Logistic Regression Approach. Engineering Construction & Architectural Management (09699988), 29(8), 2905-2923.

View Publication

Abstract

Purpose: The identification of fatigue status and early intervention to mitigate fatigue can reduce the risk of workplace injuries. Off-the-shelf wearable sensors capable of assessing multiple parameters are available. However, using numerous variables in the fatigue prediction model can elicit data issues. This study aimed at identifying the most relevant variables for measuring occupational fatigue among entry-level construction workers by using common wearable sensor technologies, such as electrocardiogram and actigraphy sensors. Design/methodology/approach: Twenty-two individuals were assigned different task workloads in repeated sessions. Stepwise logistic regression was used to identify the most parsimonious fatigue prediction model. Heart rate variability measurements, standard deviation of NN intervals and power in the low-frequency range (LF) were considered for fatigue prediction. Fast Fourier transform and autoregressive (AR) analysis were employed as frequency domain analysis methods. Findings: The log-transformed LF obtained using AR analysis is preferred for daily fatigue management, whereas the standard deviation of normal-to-normal NN is useful in weekly fatigue management. Research limitations/implications: This study was conducted with entry-level construction workers who are involved in manual material handling activities. The findings of this study are applicable to this group. Originality/value: This is the first study to investigate all major measures obtainable through electrocardiogram and actigraphy among current mainstream wearables for monitoring occupational fatigue in the construction industry. It contributes knowledge on the use of wearable technology for managing occupational fatigue among entry-level construction workers engaged in material handling activities. [ABSTRACT FROM AUTHOR]; Copyright of Engineering Construction & Architectural Management (09699988) is the property of Emerald Publishing Limited and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Keywords

Construction Workers; Wearable Technology; Logistic Regression Analysis; Fatigue (physiology); Frequency-domain Analysis; Heart Beat; Lifting & Carrying (human Mechanics); Construction Safety; Information And Communication Technology (ict) Applications; Management; Technology

Using Open Data and Open-source Software to Develop Spatial Indicators of Urban Design and Transport Features for Achieving Healthy and Sustainable Cities

Boeing, Geoff; Higgs, Carl; Liu, Shiqin; Giles-corti, Billie; Sallis, James F.; Cerin, Ester; Lowe, Melanie; Adlakha, Deepti; Hinckson, Erica; Moudon, Anne Vernez; Salvo, Deborah; Adams, Marc A.; Barrozo, Ligia, V; Bozovic, Tamara; Delclos-alio, Xavier; Dygryn, Jan; Ferguson, Sara; Gebel, Klaus; Thanh Phuong Ho; Lai, Poh-chin; Martori, Joan C.; Nitvimol, Kornsupha; Queralt, Ana; Roberts, Jennifer D.; Sambo, Garba H.; Schipperijn, Jasper; Vale, David; Van De Weghe, Nico; Vich, Guillem; Arundel, Jonathan. (2022). Using Open Data and Open-source Software to Develop Spatial Indicators of Urban Design and Transport Features for Achieving Healthy and Sustainable Cities. Lancet Global Health, 10(6), E907-E918.

View Publication

Abstract

Benchmarking and monitoring of urban design and transport features is crucial to achieving local and international health and sustainability goals. However, most urban indicator frameworks use coarse spatial scales that either only allow between-city comparisons, or require expensive, technical, local spatial analyses for within-city comparisons. This study developed a reusable, open-source urban indicator computational framework using open data to enable consistent local and global comparative analyses. We show this framework by calculating spatial indicators-for 25 diverse cities in 19 countries-of urban design and transport features that support health and sustainability. We link these indicators to cities' policy contexts, and identify populations living above and below critical thresholds for physical activity through walking. Efforts to broaden participation in crowdsourcing data and to calculate globally consistent indicators are essential for planning evidence-informed urban interventions, monitoring policy effects, and learning lessons from peer cities to achieve health, equity, and sustainability goals.

Keywords

Systems; Access; Care

Lingzi Wu

Lingzi Wu is an Assistant Professor with the Department of Construction Management (CM) at the University of Washington (UW). Prior to joining UW in September 2022, Dr. Wu served as a postdoctoral fellow in the Department of Civil and Environmental Engineering at University of Alberta, where she received her MSc and PhD in Construction Engineering and Management in 2013 and 2020 respectively. Prior to her PhD, Dr. Wu worked in the industrial construction sector as a project coordinator with PCL Industrial Management from 2013 to 2017.

An interdisciplinary scholar focused on advancing digital transformation in construction, Dr. Wu’s current research interests include (1) integration of advanced data analytics and complex system modeling to enhance construction practices and (2) development of human-in-the-loop decision support systems to improve construction performance (e.g., sustainability and safety). Dr. Wu has published 10 papers in top journals and conference proceedings, including the Journal of Construction Engineering and Management, Journal of Computing in Civil Engineering, and Automation in Construction. Her research and academic excellence has received notable recognition, including a “Best Paper Award” at the 17th International Conference on Modeling and Applied Simulation, and the outstanding reviewer award from the Journal of Construction Engineering and Management.

As an educator and mentor, Dr. Wu aims to create an inclusive, innovative, and interactive learning environment where students develop personal, technical, and transferable skills to grow today, tomorrow, and into the future.

Narjes Abbasabadi

Narjes Abbasabadi, Ph.D., is an Assistant Professor in the Department of Architecture at the University of Washington. Dr. Abbasabadi also leads the Sustainable Intelligence Lab. Abbasabadi’s research centers on sustainability and computation in the built environment. Much of her work focuses on advancing design research efforts through developing data-driven methods, workflows, and tools that leverage the advances in digital technologies to enable augmented intelligence in performance-based and human-centered design. With an emphasis on multi-scale exploration, her research investigates urban building energy flows, human systems, and environmental and health impacts across scales—from the scale of building to the scale of neighborhood and city.

Abbasabadi’s research has been published in premier journals, including Applied Energy, Building and Environment, Energy and Buildings, Environmental Research, and Sustainable Cities and Society. She received honors and awards, including “ARCC Dissertation Award Honorable Mention” (Architectural Research Centers Consortium (ARCC), 2020), “Best Ph.D. Program Dissertation Award” (IIT CoA, 2019), and 2nd place in the U.S. Department of Energy (DOE)’s Race to Zero Design Competition (DOE, 2018). In 2018, she organized the 3rd IIT International Symposium on Buildings, Cities, and Performance. She served as editor of the third issue of Prometheus Journal, which received the 2020 Haskell Award from AIA New York, Center for Architecture.

Prior to joining the University of Washington, she taught at the University of Texas at Arlington and the Illinois Institute of Technology. She also has practiced with several firms and institutions and led design research projects such as developing design codes and prototypes for low-carbon buildings. Most recently, she practiced as an architect with Adrian Smith + Gordon Gill Architecture (AS+GG), where she has been involved in major projects, including the 2020 World Expo. Abbasabadi holds a Ph.D. in Architecture from the Illinois Institute of Technology and Master’s and Bachelor’s degrees in Architecture from Tehran Azad University.

A Case Study of the Failure of Digital Communication to Cross Knowledge Boundaries in Virtual Construction

Neff, Gina; Fiore-Silfvast, Brittany; Dossick, Carrie Sturts. (2010). A Case Study of the Failure of Digital Communication to Cross Knowledge Boundaries in Virtual Construction. Information Communication & Society, 13(4), 556 – 573.

View Publication

Abstract

When can digital artefacts serve to bridge knowledge barriers across epistemic communities? There have been many studies of the roles new information and communication technologies play within organizations. In our study, we compare digital and non-digital methods of inter-organizational collaboration. Based on ethnographic fieldwork on three construction projects and interviews with 65 architects, engineers, and builders across the USA, we find that IT tools designed to increase collaboration in this setting instead solidify and make explicit organizational and cultural differences between project participants. Our study suggests that deeply embedded disciplinary thinking is not easily overcome by digital representations of knowledge and that collaboration may be hindered through the exposure of previously implicit distinctions among the team members' skills and organizational status. The tool that we study, building information modelling, reflects and amplifies disciplinary representations of the building by architects, engineers, and builders instead of supporting increased collaboration among them. We argue that people sometimes have a difficult time overcoming the lack of interpretive flexibility in digital coordinating tools, even when those tools are built to encourage interdisciplinary collaboration.

Keywords

Digital Communications; Data Transmission Systems; Communication & Technology; Digital Electronics; System Analysis; Building Information Modelling; Collaboration; Qualitative Methods; Teams; Civil Engineering Computing; Digital Communication; Groupware; Knowledge Representation; Organisational Aspects; Virtual Reality; Case Study; Virtual Construction; Knowledge Barriers; Epistemic Community; Interorganizational Collaboration; Ethnographic Fieldwork; Interpretive Flexibility; Digital Coordinating Tool; Digital Collaboration; Technology; Objects; Design; Representations; Organizations

Free: Accounting for the Costs of the Internet’s Most Popular Price

Hoofnagle, Chris Jay; Whittington, Jan. (2014). Free: Accounting for the Costs of the Internet’s Most Popular Price. UCLA Law Review, 61(3), 606 – 670.

View Publication

Abstract

Offers of free services abound on the Internet. But the focus on the price rather than on the cost of free services has led consumers into a position of vulnerability. For example, even though internet users typically exchange personal information for the opportunity to use these purportedly free services, one court has found that users of free services are not consumers for purposes of California consumer protection law. This holding reflects the common misconception that the costs of free online transactions are negligible when in fact true costs may be quite significant. To elucidate the true costs of these allegedly free services, we apply a transaction cost economics (TCE) approach. Unlike orthodox economic theory, TCE provides a framework for analyzing exchanges in which the price of the product seems to be zero. Under a TCE analysis, we argue that information-intensive companies misuse the term free to promote products and services that involve numerous nonpecuniary costs. In so doing, firms generate contractual hazards for consumers, ignore consumer preferences for privacy, and mislead consumers by creating the impression that a given transaction will be free. While psychological research and behavioral economics may support an outright ban of free offers because of their biasing effects, TCE suggests reforming governance structures to place the business risks associated with free transactions more firmly in the hands of businesses. We suggest alterations to governance structures such as the Federal Trade Commission's Guide Concerning Use of the Word Free (FTC Guide) to curb the incentives of firms to raise transaction costs for consumers. The FTC Guide provides support for two of the consumer protection measures we propose: first, a requirement that free service providers clearly disclose that such providers seek users' personal information in exchange for those services, and, second, the establishment of a regular price before providers can market a service as free. We further argue that the recognition of users of free services as consumers for purposes of consumer protection law would better align incentives and ensure users access to legal redress against some of the most popular services on the Internet. Lastly, we suggest the adoption of alternative governance structures designed to reduce the cost of transacting by curbing the collection of personal information from consumers of free services and by enhancing the rights of consumers to govern the dispersal of personal information from free online services to third parties.

Keywords

Free Internet Service Providers; Internet Usage Monitoring; Transaction Cost Theory Of The Firm; Internet Privacy -- Law & Legislation; Law; United States. Federal Trade Commission; Vertical Integration; Privacy

Seeking Northlake: Place, Technology, and Public as Enabling Constraints for Urban Transdisciplinary Research

Brown, Megan; Benson, G. Odessa Gonzalez; Keel, Roneva; Mahoney, Eleanor; Porter, Jennifer; Thompson, James. (2017). Seeking Northlake: Place, Technology, and Public as Enabling Constraints for Urban Transdisciplinary Research. Cities, 60, 314 – 322.

View Publication

Abstract

This article reviews the urban transdisciplinary research of the Northlake Collective, a multidisciplinary group of graduate students in the University of Washington's Lake Union Laboratory. Through a series of place-based investigations, we explored a small slice of Seattle ultimately seeking to engage the public through an online digital humanities portal. The broader goal of our work and this paper is to address how we, as a team of emerging scholars, understand and investigate 'cities' in the current century as both networked at the global scale and dynamic places for everyday interactions and processes. The paradoxes and complexity inherent to understanding the 'city' and how to address these concerns led us to develop a framework that might enrich grounded urban theory through the 'enabling constraints' of place, technology and public. The productive character of these three concepts, combined with the practical constraints and interrelationships they bring to bear, allowed us to deepen our work and produced the context for our research of Northlake. We propose this tripartite framework for exploring the contemporary city via the structure afforded by transdisciplinary, born-digital collaborations. (C) 2016 Elsevier Ltd. All rights reserved.

Keywords

Memory-work; Local Trap; City; Politics; Context; Cities; Geographies; Thinking; Systems; Agency; Transdisciplinary Urbanism; Enabling Constraints; Place; Technology; Public; Collaboration

Development of a Regional Lidar-Derived Above-Ground Biomass Model with Bayesian Model Averaging for Use in Ponderosa Pine and Mixed Conifer Forests in Arizona and New Mexico, USA

Tenneson, Karis; Patterson, Matthew S.; Mellin, Thomas; Nigrelli, Mark; Joria, Peter; Mitchell, Brent. (2018). Development of a Regional Lidar-Derived Above-Ground Biomass Model with Bayesian Model Averaging for Use in Ponderosa Pine and Mixed Conifer Forests in Arizona and New Mexico, USA. Remote Sensing, 10(3).

View Publication

Abstract

Historical forest management practices in the southwestern US have left forests prone to high-severity, stand-replacement fires. Reducing the cost of forest-fire management and reintroducing fire to the landscape without negative impact depends on detailed knowledge of stand composition, in particular, above-ground biomass (AGB). Lidar-based modeling techniques provide opportunities to increase ability of managers to monitor AGB and other forest metrics at reduced cost. We developed a regional lidar-based statistical model to estimate AGB for Ponderosa pine and mixed conifer forest systems of the southwestern USA, using previously collected field data. Model selection was performed using Bayesian model averaging (BMA) to reduce researcher bias, fully explore the model space, and avoid overfitting. The selected model includes measures of canopy height, canopy density, and height distribution. The model selected with BMA explains 71% of the variability in field-estimates of AGB, and the RMSE of the two independent validation data sets are 23.25 and 32.82 Mg/ha. The regional model is structured in accordance with previously described local models, and performs equivalently to these smaller scale models. We have demonstrated the effectiveness of lidar for developing cost-effective, robust regional AGB models for monitoring and planning adaptively at the landscape scale.

Keywords

Laser Scanner Data; Landscape Restoration Program; Canopy Fuel Parameters; Discrete-return Lidar; Western United-states; Wave-form Lidar; Airborne Laser; Tropical Forest; Climate-change; Adaptive Management; Forest Biomass; Aboveground Biomass; Airborne Lidar; Monitoring; Regional Forest Inventory; Variable Selection; Bayesian Model Averaging; Multiple Linear Regression

The Impact of Empowering Front-Line Managers on Planning Reliability and Project Schedule Performance

Kim, Yong-Woo; Rhee, Byong-Duk. (2020). The Impact of Empowering Front-Line Managers on Planning Reliability and Project Schedule Performance. Journal Of Management In Engineering, 36(3).

View Publication

Abstract

This study applies empowerment theory to production planning at the level of frontline managers in a construction project. Using structural equation modeling, we investigate how empowering frontline managers impacts their planning performance. In contrast to prior studies, we find that although psychological empowerment of frontline managers has no direct effect on their production planning reliability or scheduling performance, it has an indirect effect on planning reliability and scheduling performance, as long as the organization supports the empowerment structurally during production planning. This implies that a project manager should provide frontline managers at the operational level with proper formal and informal authority over workflow development, shielding, and resource allocation when planning production in order to enhance job performance through psychological empowerment. This study contributes to the body of knowledge on construction management by exploring the impact of psychological and structural empowerment of frontline managers on their performance of production planning reliability and scheduling performance.

Keywords

Psychological Empowerment; Work; Model; Variables; System; Job; Planning Reliability; Production Planning; Scheduling Performance; Structural Empowerment; Structural Equation Modeling