Skip to content

AquaponicsOpti

Aquaponics OPTI: sustainable food production

Sustainable food production depends on the recovery of water, energy, and nutrients from waste streams within existing supply chains. Greenhouse hydroponic systems (HYP) and recirculating aquaculture systems (RAS) are two intensive food production systems that in combined production as an aquaponics system (AP) can utilize fish wastes as fertilizers, while recycling water and energy to increase both systems’ sustainability and efficiency.

Suitability of the height above nearest drainage (HAND) model for flood inundation mapping in data-scarce regions: a comparative analysis with hydrodynamic models

Thalakkottukara, N. T., Thomas, J., Watkins, M. K., Holland, B. C., Oommen, T., & Grover, H. (2024). Suitability of the height above nearest drainage (HAND) model for flood inundation mapping in data-scarce regions: a comparative analysis with hydrodynamic models. Earth Science Informatics. https://doi.org/10.1007/s12145-023-01218-x.

View Publication

Abstract

Unprecedented floods from extreme rainfall events worldwide emphasize the need for flood inundation mapping for floodplain management and risk reduction. Access to flood inundation maps and risk evaluation tools remains challenging in most parts of the world, particularly in rural regions, leading to decreased flood resilience. The use of hydraulic and hydrodynamic models in rural areas has been hindered by excessive data and computational requirements. In this study, we mapped the flood inundation in Huron Creek watershed, Michigan, USA for an extreme rainfall event (1000-year return period) that occurred in 2018 (Father's Day Flood) using the Height Above Nearest Drainage (HAND) model and a synthetic rating curve developed from LIDAR DEM. We compared the flood inundation extent and depth modeled by the HAND with flood inundation characteristics predicted by two hydrodynamic models, viz., HEC-RAS 2D and SMS-SRH 2D. The flood discharge of the event was simulated using the HEC-HMS hydrologic model. Results suggest that, in different channel segments, the HAND model produces different degrees of concurrence in both flood inundation extent and depth when compared to the hydrodynamic models. The differences in flood inundation characteristics produced by the HAND model are primarily due to the uncertainties associated with optimal parameter estimation of the synthetic rating curve. Analyzing the differences between the HAND and hydrodynamic models also highlights the significance of terrain characteristics in model predictions. Based on the comparable predictive capability of the HAND model to map flood inundation areas during extreme rainfall events, we demonstrate the suitability of the HAND-based approach for mitigating flood risk in data-scarce, rural regions.

Keywords

Flood inundation mapping; Father's Day Flood; Data-scarce regions; HAND; HEC-RAS 2D; SMS-SRH 2D

Future Marsh Evolution Due To Tidal Changes Induced by Human Adaptation to Sea Level Rise

Celina Balderas Guzmán, Kevin J. Buffington, Karen M. Thorne, Glenn R. Guntenspergen, Michelle A. Hummel, Mark T. Stacey (2023). Future Marsh Evolution Due To Tidal Changes Induced by Human Adaptation to Sea Level Rise. Earth’s Future. 11(9):e2023EF003518.

View Publication

Abstract

With sea level rise threatening coastal development, decision-makers are beginning to act by modifying shorelines. Previous research has shown that hardening or softening shorelines may change the tidal range under future sea level rise. Tidal range can also be changed by natural factors. Coastal marshes, which humans increasingly depend on for shoreline protection, are ecologically sensitive to tidal range. Therefore, it is critical to examine how changes in tidal range could influence marsh processes. A marsh accretion model was used to investigate the ecological response of a San Francisco Bay, California, USA marsh to multiple tidal range scenarios and sea level rise from 2010 to 2100. The scenarios include a baseline scenario with no shoreline modifications in the estuary, a shoreline hardening scenario that amplifies the tidal range, and 14 tidal range scenarios as a sensitivity analysis that span tidal amplification and reduction of the baseline scenario. The modeling results expose key tradeoffs to consider when planning for sea level rise. Compared to the baseline, the hardening scenario shows minor differences. However, further tidal amplification prolongs marsh survival but decreases Sarcocornia pacifica cover, an important species for certain threatened wildlife and an effective attenuator of wave energy. Conversely, tidal reduction precipitates marsh drowning but shows gains in Sarcocornia pacifica cover. These mixed impacts of tidal amplification and reduction shown by the model indicate potential tradeoffs in relation to marsh survival, habitat characteristics, and shoreline protection. This study suggests the need for a cross-sectoral, regional approach to sea level rise adaptation.

Aaron Julius M. Lecciones

Research Interests: urban sustainability and resiliency, hybridized built environments, wetland city and wetland center typologies, nature-based solutions and scalable blue-green-gray infrastructure, human ecology and urban informatics in urban design

EarthLab 2023-2024 Innovation Grant awardees

EarthLab selected the 2023-2024 Innovation Grant Awardees in April 2023. One of the projects chosen includes College of Built Environments researchers on the interdisciplinary team. The project description and research team is detailed below. “Cultivating Transdisciplinary Support for Equitable and Resilient Floodplain Solutions” Project Description: In 2021 a massive flood on the Nooksack River left a trail of destruction in its wake. Floods are the most expensive natural hazard in Washington State, a risk that is exacerbated by climate change….

Utilizing Fractal Dimensions as Indicators to Detect Elements of Visual Attraction: A Case Study of the Greenway along Lake Taihu, China

Fan, R., Yocom, K. P., & Guo, Y. (2023). Utilizing Fractal Dimensions as Indicators to Detect Elements of Visual Attraction: A Case Study of the Greenway along Lake Taihu, China. Land (Basel), 12(4), 883–. https://doi.org/10.3390/land12040883

View Publication

Abstract

It is widely acknowledged that the quality of greenway landscape resources enhances the visual appeal of people. While most studies have evaluated visual perception and preference, few have considered the relationship between the distribution of greenways in relation to the proximity of water bodies such as lakes and rivers. Such an investigation requires an in-depth analysis of how to plan and design greenways in order to better enhance people's willingness to access and utilize them. In this research we propose specific color brightness and contour visual attraction elements to further discuss the quality of greenway landscape resources in the rapidly urbanizing Lake Taihu region of China. Specifically, we utilize a common method in fractal theory analysis called counting box dimension to calculate and analyze the sample images. The method generates data on fractal dimension (FD) values of two elements; the optimal fractal dimension threshold range; the characteristics exhibited by the maximum and minimum fractal dimension values in the greenway landscape; and the relationship between the two visual attraction elements allowing us to derive distribution of the greenway and water bodies. The results reveal that greenway segments with high values of the visual attraction element of color brightness fractal dimension (FD) are significantly closer to the lake than those subject to high values of the visual attraction element. Some segments are even close to the lake surface, which is because the glare from the direct sunlight and the reflection from the lake surface superimposed on each other, so that the greenway near the lake surface is also affected by the brightness and shows the result of high color brightness values. However, the greenway segments with high values of contour element FD are clearly more influenced by plants and other landscape elements. This is due to the rich self-similarity of the plants themselves. Most of the greenway segments dominated by contour elements are distant from the lake surface. Both color brightness and contour elements are important indicators of the quality of the visual resources of the Lake Taihu Greenway landscape. This reveals that the determination of the sub-dimensional values of color brightness (1.7608, 1.9337) and contour (1.7230, 1.9006) visual attraction elements and the optimal threshold range (1.7608, 1.9006) can provide theoretical implications for the landscape planning and design of lake-ring type greenways and practical implications for assessing the quality of visual resources in greenway landscapes.

Keywords

color brightness; contour; visual attraction; fractal dimension (FD); boxplot; Lake Taihu

Say Where You Sample: Increasing Site Selection Transparency in Urban Ecology

Dyson, Karen; Dawwas, Emad; Poulton Kamakura, Renata; Alberti, Marina; Fuentes, Tracy L. (2023). Say Where You Sample: Increasing Site Selection Transparency in Urban Ecology. Ecosphere, 14(3).

View Publication

Abstract

Urban ecological studies have the potential to expand our understanding of socioecological systems beyond that of an individual city or region. Cross-comparative empirical work and synthesis are imperative to develop a general urban ecological theory. This can be achieved only if studies are replicable and generalizable. Transparency in methods reporting facilitates generalizability and replicability by documenting the decisions scientists make during the various steps of research design; this is particularly true for sampling design and selection because of their impact on both internal and external validity and the potential to unintentionally introduce bias. Three interdependent aspects of sample design are study sample selection (e.g., specific organisms, soils, or water), sample specification (measurement of specific variable of interest), and site selection (locations sampled). Of these, documentation of site selection—the where component of sample design—is underrepresented in the urban ecology literature. Using a stratified random sample of 158 papers from 12 major urban ecology journals, we investigated how researchers selected study sites in urban ecosystems and evaluated whether their site selection methods were transparent. We extracted data from these papers using a 50-question, theory-based questionnaire and a multiple-reviewer approach. Our sample represented almost 45 years of urban ecology research across 40 different countries. We found that more than 80% of the papers we read were not transparent in their site selection methodology. We do not believe site selection methods are replicable for 70% of the papers read. Key weaknesses include incomplete descriptions of populations and sampling frames, urban gradients, sample selection methods, and property access. Low transparency in reporting the where methodology limits urban ecologists' ability to assess the internal and external validity of studies' findings and to replicate published studies; it also limits the generalizability of existing studies. The challenges of low transparency are particularly relevant in urban ecology, a field where standard protocols for site selection and delineation are still being developed. These limitations interfere with the fields' ability to build theory and inform policy. We conclude by offering a set of recommendations to increase transparency, replicability, and generalizability.

Keywords

external validity, field ecology, generalizability, internal validity, replication, reproducibility, sampling design, site selection, theory building, transparency

Constructed Floating Wetlands: A “Safe‐to‐Fail” Study with Multi‐sector Participation

Rottle, Nancy, Bowles, Mason, Andrews, Leann, & Engelke, Jennifer (2023). Constructed Floating Wetlands: A “Safe‐to‐Fail” Study with Multi‐sector Participation. Restoration Ecology, 31(1).

View Publication

Abstract

The Duwamish River Floating Wetlands project designed, built, and deployed constructed floating wetlands in the estuary of the urban Duwamish River in Seattle, Washington, during the 2019 and 2020 outmigration seasons for juvenile salmon. Using a “safe‐to‐fail” methodology and adaptive management strategies, these innovative floating wetland prototypes were custom designed to provide the native plants, invertebrates and slow water habitat that juvenile salmon require during their transition from fresh to salt water, and were monitored for these outcomes. This paper will provide insight into the prototype designs, adaptive management strategies and plant performance, and unique public‐private‐academic‐community partnerships that supported 2 years of design and research.

Keywords

community science; cross‐sector collaboration; designed ecosystems; Duwamish River; ecological restoration; green infrastructure

Helping Rural Counties to Enhance Flooding and Coastal Disaster Resilience and Adaptation

In the United States, flooding is a leading cause of natural disasters, with congressional budget office estimates of $54 billion in loss each year. Although both urban and rural areas are highly vulnerable to flood hazards, most natural disaster resilience studies have focused primarily on urban areas, overlooking rural communities. One such area that has been overlooked are the numerous rural communities bordering the Great Lakes. These communities face unprecedented challenges due to rising water levels, particularly since 2012, which have resulted in increased coastal flood hazard. Despite their flooding risk, they continue to lack flood hazard assessments and inundation maps, exacerbating their vulnerability. The Federal Emergency Management Agency (FEMA) commonly recommend counties to use a freely available tool—called HAZUS to develop hazard mitigation plans and enhance community resilience and adaptation. However, the usage of HAZUS for rural communities is challenging  due to existing data gaps that limit the analytical potential of HAZUS in these communities. Continued use of standard datasets for HAZUS analysis by rural counties could likely leave the communities underprepared for future flood events. The proposed project’s vision is to develop methods that use remote sensing data resources and citizen engagement (crowdsourcing) to address current data gaps for improved flood hazard modeling and visualization that is scalable and transferable to rural communities.

The results of the project will expand the traditional frontiers of preparedness and resilience to natural disasters by drawing on the expertise and backgrounds of investigators working at the interface of geological engineering, civil engineering, computer science, marine engineering, urban planning, social science, and remote sensing. Specifically, the proposed research will promote intellectual discovery by i) improving our understanding of remote sensing data sources and open-source processing methods to assist rural communities in addressing the data gaps in flood hazard modeling, ii) developing sustainable geospatial visualization tools for communicating hazards to communities, iii) advancing our understanding of the utility of combining remote sensing and crowdsourcing to flood hazard delineation, iv) understanding ways to incentives the crowd for greater participation and accuracy in hazard in addressing natural disasters, and v) identifying critical community resilience indicators through crowdsourcing. These advancements will lead to prepared and resilient rural communities that can effectively mitigate hazards related to lake level rise and flooding.

Performative By-Products: The Emergence of Waste Reuse Strategies at the Blue Lagoon

De Almeida, Catherine. (2019). Performative By-Products: The Emergence of Waste Reuse Strategies at the Blue Lagoon. Journal of Landscape Architecture, 13(3), 64-77.

View Publication

Abstract

Materials and landscapes associated with waste are perceived as objectionable. By reactivating and embracing waste conditions as desirable opportunities for diverse programmes rooted in economy, ecology, and culture, designers can form hybrid assemblages on waste sites through the exchange of waste materials—a landscape lifecycles approach. This frame-work is applicable to not only design research, but also as a critical lens for evaluating the landscape performance of existing projects that engage with waste reuse. The Blue Lagoon in southwest Iceland materialized as a spa industry out of geothermal waste effluent from the adjacent Svartsengi Geothermal Power Station, reusing undesirable materials and transforming a waste landscape through diversified material recovery strategies. Featuring an industrial by-product turned economic generator, this case study reveals the opportunities for reusing geothermal ‘waste’ in these emergent landscape conditions, which hybridize economies with recreation, research, and ecology, and shift the conventional relationship with waste from passive to performative.

Keywords

Waste reuse; Blue Lagoon; material lifecycles; Iceland; landscape reclamation