Skip to content

Project Risk Factors Facing Construction Management Firms

Park, Kyungmo; Lee, Hyun Woo; Choi, Kunhee; Lee, Seung-hyun. (2019). Project Risk Factors Facing Construction Management Firms. International Journal Of Civil Engineering, 17(3), 305 – 321.

View Publication

Abstract

Very little is known about the project risk factors that affect construction management (CM) firms, which often struggle due to a lack of effective risk management practices. This study investigates the risk factors critical to project execution in CM firms and ranks them using the analytic hierarchy process (AHP) and failure mode and effects analysis (FMEA) methods. Interviews with executives at the top 15 Korean CM firms are carried out to identify major risk factors in the CM sector, and a survey is used to develop priority ranking. We find that payment delays and project delays are the two most critical risk factors affecting CM firms because of (1) lack of communication between headquarters and field offices, (2) shift of responsibility from headquarters to a field office, (3) absence of regular monitoring of project progress, and (4) ex-post management practices. The findings presented in this study should assist CM firms in establishing more robust risk management practices, thereby improving firms' profitability, project performance, and customer satisfaction.

Keywords

Analytic Hierarchy Process; Customer Satisfaction; Factor Analysis; Risk Assessment; Risk Management; Analytic Hierarchy Process (ahp); Construction Management; Construction Management Firms; Failure Mode And Effects Analysis; Korea; Management Practices; Risk Factors; Risk Management Practices; Industry

Analyzing Investments in Flood Protection Structures: A Real Options Approach

Gomez-Cunya, Luis-Angel; Fardhosseini, Mohammad Sadra; Lee, Hyun Woo; Choi, Kunhee. (2020). Analyzing Investments in Flood Protection Structures: A Real Options Approach. International Journal Of Disaster Risk Reduction, 43.

View Publication

Abstract

The soaring number of natural hazards in recent years due largely to climate change has resulted in an even higher level of investment in flood protection structures. However, such investments tend to be made in the aftermath of disasters. Very little is known about the proactive planning of flood protection investments that account for uncertainties associated with flooding events. Understanding the uncertainties such as when to invest on these structures to achieve the most optimal cost-saving amount is outmost important. This study fills this large knowledge gap by developing an investment decision-making assessment framework that determines an optimal timing of flood protection investment options. It combines real options with a net present value analysis to examine managerial flexibility in various investment timing options. Historical data that contain information about river water discharges were leveraged as a random variable in the modeling framework because it may help investors better understand the probability of extreme events, and particularly, flooding uncertainties. A lattice model was then used to investigate potential alternatives of investment timing and to evaluate the benefits of delaying investments in each case. The efficacy of the proposed framework was demonstrated by an illustrative example of flood protection investment. The framework will be used to help better inform decision makers.

Keywords

Decision-making; Flood Protection; Real Options Theory; Investment Decision-making

Application of Prevention Through Design (PTD) to Improve the Safety of Solar Installations on Small Buildings

Ho, Chung; Lee, Hyun Woo; Gambatese, John A. (2020). Application of Prevention Through Design (PTD) to Improve the Safety of Solar Installations on Small Buildings. Safety Science, 125.

View Publication

Abstract

As a viable, clean and renewable energy resource, solar energy has gained a significant interest in the US residential sector. Most solar systems are installed on rooftops to take advantage of available space and reduce land use. However, this installation environment also exposes workers to unique safety hazards related to existing roof conditions such as slippery roofing materials, irregular roof layouts, and steep roof slopes. Although Prevention through Design (ND) has been widely considered as an effective way to address safety issues during the design phase, little to no studies have applied ND to improve safety in solar energy installations. To fill this knowledge gap, this research aimed to investigate how, during the design phase, to address the safety concerns of solar workers when installing solar energy systems on residential buildings. Through a series of interviews, four case studies, and a seminar, seven solar ND attributes were identified: roofing materials, roof slopes, roof accessories, panel layouts, fall protection systems, lifting methods and electrical systems. Based on the attributes, a ND protocol was developed that can serve as guidance for implementing ND in solar installations. This paper presents the research activities and findings, and feedback gained from solar contractors through a seminar on the study. The study is expected to contribute to reducing safety hazards by implementing ND, help improve safety performance in solar installations on small residential buildings and support the promotion of safety in sustainable construction.

Keywords

Roofing Materials; Renewable Energy Sources; Sustainable Construction; Solar Energy; Clean Energy; Construction Safety; Prevention Through Design; Small Buildings; Solar Installations; Buildings (structures); Construction Industry; Hazards; Occupational Safety; Roofs; Safety; Solar Power; Sustainable Development; Steep Roof Slopes; Design Phase; Solar Energy Installations; Solar Workers; Installing Solar Energy Systems; Residential Buildings; Seven Solar Ptd Attributes; Roof Accessories; Ptd Protocol; Solar Contractors; Safety Performance; Viable Energy Resource; Clean Energy Resource; Renewable Energy Resource; Us Residential Sector; Solar Systems; Installation Environment; Unique Safety Hazards; Roof Conditions; Slippery Roofing Materials; Irregular Roof Layouts; Issues; Accident Prevention; Protocol; Energy Sources; Residential Areas; Land Use; Prevention; Design; Falls; Occupational Hazards; Contractors; Residential Energy; Protection Systems; Renewable Energy; Buildings; Roofing; Layouts

College of Built Environments’ unique Inspire Fund aims to foster research momentum in underfunded pursuits college-wide. And it’s working.

Launching the Inspire Fund: An early step for CBE’s Office of Research “For a small college, CBE has a broad range of research paradigms, from history and arts, to social science and engineering.” — Carrie Sturts Dossick, Associate Dean of Research Upon taking on the role of Associate Dean of Research, Carrie Sturts Dossick, professor in the Department of Construction Management, undertook listening sessions to learn about the research needs of faculty, staff and students across the College of Built…

2022 CBE Inspire Fund awardees announced

In 2021 the College of Built Environments launched the CBE Inspire Fund, designed to support CBE research activities for which a relatively small amount of support can be transformative. The second year of awards have just been announced, supporting five projects across 4 departments within the college as they address topics such as food sovereignty, anti-displacement, affordable housing, and health & wellbeing. This year’s awardees include:  Defining the New Diaspora: Where Seattle’s Black Church Congregants Are Moving and Why Rachel…

Hyun Woo “Chris” Lee and Laura Osburn publish design guide for worker safety

Previous studies on construction hazard prevention have shown that almost 50% of construction fatalities and accidents can be linked to decisions made during the design process. To address the influence of upstream design decisions on worker safety, researchers have developed the Prevention through Design (PtD) concept to proactively eliminate safety hazards in the workplace. In response, CBE researchers, Hyun Woo “Chris” Lee, PD Koon Endowed Associate Professor in Construction Management and Dr. Laura Osburn, Senior Research Scientist in Construction Management,…

Julie Kriegh and collaborators launch studio booklet based on their work with Google

Julie Kriegh, researcher with the Carbon Leadership Forum and other CBE research centers, and owner of Kriegh Architecture Studios, collaborated with other CBE faculty and external partners to lead a UW CBE studio course in collaboration with Google that developed and delivered a design proposal for a sustainable data center. CBE collaborators included Hyun Woo “Chris” Lee, P.D. Koon Professorship in Construction Management; Jan Whittington, Associate Professor of the Department of Urban Design and Planning, and Director of the Urban…

Inaugural CBE Inspire Fund awardees announced

This winter quarter the College of Built Environments launched its new CBE Inspire Fund. Designed to support CBE research activities for which a relatively small amount of support can be transformative, in mid-February the college awarded the first 6 grants. Projects supported by the CBE Inspire Fund hail from 4 departments within the college and tackling topics such as food systems, mapping cultural spaces, and energy justice. The CBE Inspire Fund is the first research funding opportunity offered by the…

PhD in the Built Environment

The College of Built Environments consists of five departments that together provide one of the country’s few comprehensive built environment programs within one academic unit: Architecture, Construction Management, Landscape Architecture, Real Estate, and Urban Design and Planning. Together, this combination of departments enable faculty and students to engage almost the entire development process, from economic and environmental planning, real estate, regulatory processes, siting and design, through actual financing and construction, to facility management and adaptive reuse in subsequent stages. Thus, the college is inherently multi-disciplinary, not only in terms of the dimensions of reality that it treats, but also in regard to the specialized disciplines, methods, and practices that it employs: history, theory, cultural criticism, engineering, design, planning, urban design, energy sciences, acoustics, lighting, environmental psychology, ecology, real estate analysis, statistics, management, horticulture, soil science, law, public policy, and ethics. In addition, because of the College’s focus on comprehensive analysis and practice concerning the built environment and its interrelation with society, it is substantially engaged in interdisciplinary work with other units on campus and outside of the campus, including mechanical, civil, and electrical engineering; with public policy and the health sciences; with art and art history; with textual interpretation in the humanities; with many of the computing and digitization activities that range from digital arts to the information school and technical communications; with education and social studies and services; with sustainability and ecological programs, including urban ecology, geography, the College of Forest Resources (especially urban horticulture and urban forestry), and Ocean Science and Fisheries; with environmental and land use law.

The College’s interdisciplinary character is a good fit with the emerging trends in today’s complex world, where only a pluralistic and collaborative approach will generate the necessary learning and teaching, research, and service. If we are to provide, in the end, both disciplinary and professional means to promote environmental well-being, the diverse environmental specializations must be fully integrated. Thus, working outside traditional disciplinary and departmental categories, the College’s faculty will advance solutions to problems that demand interdisciplinary perspectives and expertise. Other UW units bring much to bear on the built environment and students are wholeheartedly encouraged to explore possible cross-campus connections both in obvious and seemingly unlikely places. The Technology and Project Design/Delivery specialization especially connects with Psychology, the Information School, Technical Communication, Computer Science and Engineering, and Industrial Engineering; the Sustainable Systems and Prototypes field with Civil Engineering, Electrical Engineering, Industrial Engineering, Mechanical Engineering, the Information School, Technical Communication, the College of Forest Resources (especially Eco-System Science and Conservation, Urban Horticulture and Urban Forestry), the Evans School of Public Affairs, Geography, Public Health, Ocean Science and Fisheries, and Social Work, Urban Ecology, and perhaps Advanced Materials and Manufacturing Processes and Nanotechnology; the area of History, Theory, and Representation with Textual Studies, Art History, Interdisciplinary Arts & Sciences at Tacoma, and Comparative History of Ideas.

Energy & Sustainability in Construction (ESC) Lab

The Energy and Sustainability in Construction (ESC) Lab promotes energy efficiency and sustainability (EES) in the built environment through the development of sustainable design, innovative project delivery practices, and risk-based financial models for EES investments. Our work focuses on integrating advanced financial analysis, project development, and management strategies to enhance the delivery of energy-efficient buildings and sustainable infrastructure.
Through innovative solutions, the ESC Lab addresses complex challenges in current project development practices that slow the transition toward a more sustainable society. Our research spans a wide range of critical areas, including commercial energy retrofits, community solar projects, green datacenters, healthy commercial buildings, and electric vehicle (EV) charging infrastructure. By tackling these pressing issues, the ESC Lab is at the forefront of driving transformative changes in the built environment.

Financial and Management Questions that Lead to Sustainable Solutions

The ESC Lab targets to help project stakeholders evaluate the risks and rewards of energy efficiency and sustainability (EES) investments by addressing some of the industry’s most pressing financial and management challenges, including:

  • What policies, financing mechanisms, and project delivery systems best support the advancement of EES?
  • How can we categorize and accurately model the unique risks associated with EES investments?
  • What analytical modeling methods can be applied to ensure the effective implementation of EES measures in projects?
  • How can we optimize investment strategies to balance environmental benefits with financial returns?
  • What best practices can enhance stakeholder engagement and collaboration to drive successful EES project outcomes?

Pursuing Innovative Solutions to Energy Efficiency and Sustainability

The ESC Lab has developed a series of analytical models and evaluation practices that facilitate the effective delivery of energy-efficient commercial buildings and sustainable infrastructure, including:

  • Cost and power demand model for electric vehicle (EV) charging infrastructure
  • Conceptual cost and carbon estimating model for mass timber structure
  • Energy-Related Risk Management in Integrated Project Delivery
  • Phased Investment for Energy Retrofit (PIER)
  • Energy Retrofit Loan Analysis Model (ERLAM)
  • An optimized portfolio analysis for community-based photovoltaic investment

ESC Research Funders and Selected Projects:

  • UW Clean Energy Institute: “Equitable Public Electric Vehicle Charging Infrastructure Expansion—From the Tribal Community Perspective”
  • King County MetroSound TransitSeattle City Light: “Electrified Mobility Hubs: A Blueprint for the Future of Transit Infrastructure”
  • UW Global Innovation Fund: “Mitigating Effects of Future Pandemics with the Use of Risk-Responsive Building Codes: A Developing Country Framework”
  • King County Metro: “Evaluation of a Public/Private Partnership (P3) Model for Bus Base Electrification”
  • UW CBE INSPIRE Fund: “Investigating the Health Requirements and Risk-Responsiveness Criteria in Office Building Codes for Mitigating COVID-19 and Future Airborne Diseases”
  • UW CBE INSPIRE Fund: “Investigating Energy Justice in Washington State in Terms of Photovoltaic (PV) Systems and Electric Vehicle (EV) Chargers”
  • Google: “A Proposal to Grow a Greener Data Center with Google”
  • UW Population Health: “Economic Impact of Office Workplace Transformation due to COVID-19: How Can Buildings and Surrounding Areas Recover?”
  • UW Transportation: “UW Transportation Electrification and Solar Study”
  • RERILBNLDOE: “Effect of Energy Benchmarking and Disclosure on Office Building Marketability”
  • PankowSkanskaOregon DEQ: “Life Cycle Assessment (LCA) for Low Carbon Construction Commercial Office Building MEP & Interiors Data”
  • BE Innovation: “Impact of Energy Benchmarking and Disclosure on the Performance of Office Buildings”

Selected Journal Publications:

  • Min, Y. and Lee, H.W. (2024). “Adoption Inequalities and Causal Relationship between Residential Electric Vehicle Chargers and Heat Pumps.” ASCE Journal of Construction Engineering and Management, 04024025.
  • Min, Y. and Lee, H.W. (2024). “Quantifying Clean Energy Justice: Impact of Solarize Programs on Rooftop Solar Disparities in the Pacific Northwest.” Sustainable Cities and Society, 105287.
  • Shang, L., Dermisi, S., Choe, Y., Lee, H.W., and Min, Y. (2023). “Assessing the Office Building Marketability Before and After the Implementation of Energy Benchmarking and Disclosure Policies – Lessons Learned from Major US Cities.” Sustainability, 15(11), 8883.
  • Min, Y. and Lee, H.W. (2023). “Characterization of Vulnerable Communities in Terms of the Benefits and Burdens of the Energy Transition in Pacific Northwest Cities.” Journal of Cleaner Production, 135949.
  • Min, Y., Lee, H.W., and Hurvitz, P.M.  (2023). “Clean Energy Justice: Different Adoption Characteristics of Underserved Communities in Rooftop Solar and Electric Vehicle Chargers in Seattle.” Energy Research and Social Science, 96(1), 102931.
  • Su, S., Li, X., Zhu, C., Lu, Y., and Lee, H.W. (2021). “Dynamic Life Cycle Assessment: A Review of Research for Temporal Variations in Life Cycle Assessment Studies.” Environmental Engineering Science, 38(11).
  • Droguett, B. X. R., Huang, M., Lee, H.W., Simonen, K., and Ditto, J. (2020). “Mechanical, Electrical, Plumbing and Tenant Improvements Over the Building Lifetime: Estimating Material Quantities and Embodied Carbon for Climate Change Mitigation.” Energy and Buildings, 226, 110324.
  • Ho, C., Lee, H.W., and Gambatese, J. (2020). “Application of Prevention through Design (PtD) to Improve the Safety of Solar Installations on Small Buildings.” Safety Science, 125, 104633.
  • Gomez Cunya, L.A., Fardhosseini, M.S., Lee, H.W., and Choi, K. (2020). “Analyzing Investments in Flood Protection Structures: A Real Options Approach.” International Journal of Disaster Risk Reduction, 43(2), 101377.
  • Shang, L., Lee H.W., Dermisi, S., and Choe, Y., (2020). “Impact of Energy Benchmarking and Disclosure Policy on Office Buildings.” Journal of Cleaner Production, 250, 119500.
  • Shakouri, M., Lee, H.W., and Kim, Y.-W. (2017). “A Probabilistic Portfolio-based Model for Financial Valuation of Community Solar.” Applied Energy, 191(1), 709-726.
  • Shakouri, M. and Lee, H.W. (2016). “Mean-Variance Portfolio Analysis Data for Optimizing Community-based Photovoltaic Investment.” Data in Brief, 6(1), 840-842.\

Current and Former Lab Members:

  • Abdul-Razak Alidu
  • Byungju Jeon
  • Chitika Vasudeva
  • Yohan Min
  • Matt Wiggins
  • Novi T.I. Bramono
  • Yong-Hyuk Oh
  • Chuou Zhang
  • Jonghyeob Kim
  • Wenqi Zhu
  • Julie Knorr
  • Zhila Mohammady