Skip to content

Deep Neural Network Approach for Annual Luminance Simulations

Liu, Yue; Colburn, Alex; Inanici, Mehlika. (2020). Deep Neural Network Approach for Annual Luminance Simulations. Journal Of Building Performance Simulation, 13(5), 532 – 554.

View Publication

Abstract

Annual luminance maps provide meaningful evaluations for occupants' visual comfort and perception. This paper presents a novel data-driven approach for predicting annual luminance maps from a limited number of point-in-time high-dynamic-range imagery by utilizing a deep neural network. A sensitivity analysis is performed to develop guidelines for determining the minimum and optimum data collection periods for generating accurate maps. The proposed model can faithfully predict high-quality annual panoramic luminance maps from one of the three options within 30 min training time: (i) point-in-time luminance imagery spanning 5% of the year, when evenly distributed during daylight hours, (ii) one-month hourly imagery generated during daylight hours around the equinoxes; or (iii) 9 days of hourly data collected around the spring equinox, summer and winter solstices (2.5% of the year) all suffice to predict the luminance maps for the rest of the year. The DNN predicted high-quality panoramas are validated against Radiance renderings.

Keywords

Scattering Distribution-functions; Daylight Performance; Glare; Model; Prediction; Daylighting Simulation; Luminance Maps; Machine Learning; Neural Networks; Hdr Imagery; Panoramic View

Human-Centric Lighting Performance of Shading Panels in Architecture: A Benchmarking Study with Lab Scale Physical Models Under Real Skies

Parsaee, Mojtaba; Demers, Claude M. H.; Lalonde, Jean-francois; Potvin, Andre; Inanici, Mehlika; Hebert, Marc. (2020). Human-Centric Lighting Performance of Shading Panels in Architecture: A Benchmarking Study with Lab Scale Physical Models Under Real Skies. Solar Energy, 204, 354 – 368.

View Publication

Abstract

This study investigates shading panels' (SPs) impacts on daylighting features in a lab scale model in terms of parameters representing potential human eyes' biological responses identified as image forming (IF) and non-image forming (NIF). IF responses enable vision and NIF responses regulate internal body clocks known as circadian clocks. Human-centric lighting evaluates photopic units, representing IF responses, and melanopic units representing NIF responses, combined with correlated color temperature (CCT) of light for potential biological effects. SPs' impacts on such parameters of daylighting have not yet been studied. Previous research mostly studied panels' impacts on visual comfort and glare related to IF responses. This research explores the impact of SPs' color, reflectance, orientation, and openness on photopic and melanopic units and CCT of daylighting inside a 1:50 physical scale model of a space. Approximately 40 prototypes of SPs were evaluated. An experimental setup was designed under outdoor daylighting conditions to capture high dynamic range (HDR) images inside the model. HDR images were post processed to calculate and render the distribution of photopic and melanopic units, melanopic/photopic (M/P) ratios and CCTs in the captured viewpoint of the model. Results reveal the behavior of SPs' color, reflectance, orientation, and openness in modifying daylighting parameters related to biological responses. Bluish panels, in particular, increase daylighting melanopic units and CCTs whereas reddish panels increase photopic units and reduce CCTs. The research results were discussed to provide an outline for future developments of panels to adapt daylighting to occupants' IF and NIF responses.

Keywords

Models & Modelmaking; Shades & Shadows; Daylighting; Color Temperature; Benchmarking (management); Ecological Houses; Eye Tracking; Circadian Rhythms; Adaptive Design; Healthy Lighting; High Performance Façade; Photobiology; Responsive Building; Design; Sensitivity; Illuminance; Systems; Spaces; Impact; Glare; High Performance Facade; Reflectance; Scale Models; Biological Effects; Human Performance; Prototypes; Parameter Modification; Lighting; Shading; Eye (anatomy); Color; Parameter Identification; Light Effects; Panels; Mathematical Models; Images; Biological Clocks; Orientation

Syncing with the Sky: Daylight-Driven Circadian Lighting Design

Altenberg Vaz, Nathan; Inanici, Mehlika. (2021). Syncing with the Sky: Daylight-Driven Circadian Lighting Design. Leukos, 17(3), 291 – 309.

View Publication

Abstract

The use of daylight in the built environment is often preferred to artificial light sources as its successful application can provide visual comfort and satisfaction along with the potential for significant energy savings. Exposure to daylight is also the primary source for stimulus that establishes a healthy day/night cycle in all living organisms. This is known as circadian rhythm. Newly discovered photoreceptors (intrinsically photosensitive retinal ganglion cells - ipRGC) within the mammalian eye, including humans, are specifically linked to the portion of the brain responsible for maintaining a healthy circadian rhythm. This discovery has led to a new subject area in the field of lighting design focused on controlling the spectrum of light that these photoreceptors are sensitive to. Currently, work in the field of circadian lighting design is concentrated on the use of artificial light sources for circadian stimulus. This is largely due to the advent of the widespread use of LED technology, which has proven that it can be a significant source of light that can delay or advance the circadian clock. The use of daylight to provide circadian stimulus has been a given in this field of design, however, there has not been very much research into how the built environment affects our ability to effectively receive this stimulus from daylight. In this research, the groundwork is established to start to create a set of guidelines to help architects and designers maximize the potential for daylight to provide circadian stimulus at the earliest stages of a project. This is accomplished through a series of lighting simulations that explore and test various architectural parameters that affect daylight-driven circadian lighting, with simultaneous consideration given to photopic lighting availability and visual comfort. The architectural parameters tested in this study included window head height, building orientation, shading devices, visual obstructions to the sky, and room depth. The results show that informed design decisions could maximize circadian potential in a given space, while achieving visually satisfactory luminous environments.

Keywords

Action Spectrum; Melanopsin; Environments; Sensitivity; Framework; Stimulus; Rod; Circadian Lighting; Daylight; Lighting Simulation; Alfa

Biophilic Photobiological Adaptive Envelopes for Sub-Arctic Buildings: Exploring Impacts of Window Sizes and Shading Panels’ Color, Reflectance, and Configuration

Parsaee, Mojtaba; Demers, Claude M. H.; Potvin, Andre; Lalonde, Jean-Francois; Inanici, Mehlika; Hebert, Marc. (2021). Biophilic Photobiological Adaptive Envelopes for Sub-Arctic Buildings: Exploring Impacts of Window Sizes and Shading Panels’ Color, Reflectance, and Configuration. Solar Energy, 220, 802 – 827.

View Publication

Abstract

Northern building envelopes must provide efficient indoor-outdoor connections based on photobiologicalpsychological needs of occupants for positive relationships with the sub-Arctic nature, particularly daylighting and day/night cycles. Envelope configurations of Northern Canada's buildings have not yet considered such requirements. Potentials of adaptive systems are also still limited. This research develops a fundamental model of adaptive multi-skin envelopes for sub-Arctic buildings based on main biophilic and photobiological indicators which characterize efficient indoor-outdoor connections. Biophilic indicators characterize the state of connections among occupants and outdoors which could stimulate biological-psychological responses. Photobiological indicators determine human-centric lighting adaptation scenarios for hourly lighting qualities and sufficient darkness in relation to local day/night cycles and daylighting. Biophilic performance of the proposed envelope was evaluated through 18 numerical models in terms of impacts of window and shading sizes on occupants' field of views. Photobiological lighting performance was evaluated by experimental methods using 23 physical models at 1:10 scale. Surface characteristics of dynamic shading panels, including color, reflectance, orientation, and inclination, were studied for potential photobiological impacts in terms of melanopic/photopic ratios and color temperatures. Results show that the proposed envelope could (i) offer acceptable direct visual connections with the outdoor nature through efficient window sizes for biophilia, and (ii) modify daylighting qualities to address hourly/seasonal photobiological needs of sub-Arctic occupants. Challenges of the proposed envelope to implement under sub-Arctic climatic conditions are underlined especially in terms of energy issues. The research outcomes help architects and decision-makers to improve occupants' wellbeing and healthy buildings in subArctic climates.

Keywords

Window Shades; Building Envelopes; Reflectance; Color Temperature; Daylighting; Building-integrated Photovoltaic Systems; Daylight; Outdoor Living Spaces; Canada; Adaptive Envelope; Arctic Climate; Biophilic Design; Healthy Building; Photobiological Lighting; Light; Exposure; Stress; Design; Architecture; Sensitivity; Illuminance; Environment; Melatonin; Recovery; Surface Properties; Performance Evaluation; Indicators; Polar Environments; Lighting; Shading; Darkness; Decision Making; Envelopes; Configurations; Buildings; Color; Adaptive Systems; Climatic Conditions; Numerical Models; Mathematical Models; Panels; Night; Climate; Orientation; Arctic Region

Evaluation of Sky Spectra and Sky Models in Daylighting Simulations

Inanici, M; Abboushi, B; Safranek, S. (2022). Evaluation of Sky Spectra and Sky Models in Daylighting Simulations. Lighting Research & Technology, 1.

View Publication

Abstract

Sky models in daylight simulations represent the luminance variation across the sky-dome for different locations, dates, times and weather conditions, but skies are typically modelled as colourless. Recent studies explore techniques for incorporating the spectral content of daylighting in simulations. This paper provides an evaluation of the existing spectral sky models in lighting simulation software. The comparisons are made between the available mathematical sky models and naturally occurring skies that were recorded using high dynamic range photography and spectrophotometric measurements. The results show that recently developed sky models present progress compared to colourless sky models, but further research is needed to accurately simulate daylight spectra. [ABSTRACT FROM AUTHOR]; Copyright of Lighting Research & Technology is the property of Sage Publications, Ltd. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

The Effect of Luminance Distribution Patterns on Occupant Preference in a Daylit Office Environment

Van Den Wymelenberg, Kevin; Inanici, Mehlika; Johnson, Peter. (2010). The Effect of Luminance Distribution Patterns on Occupant Preference in a Daylit Office Environment. Leukos, 7(2), 103 – 122.

View Publication

Abstract

New research in daylighting metrics and developments in validated digital High Dynamic Range (HDR) photography techniques suggest that luminance based lighting controls have the potential to provide occupant satisfaction and energy saving improvements over traditional illuminance based lighting controls. This paper studies occupant preference and acceptance of patterns of luminance using HDR imaging and a repeated measures design methodology in a daylit office environment. Three existing luminance threshold analysis methods [method1: predetermined absolute luminance threshold (for example, 2000 cd/m(2)), method2: scene based mean luminance threshold, and method3: task based mean luminance threshold] were studied along with additional candidate metrics for their ability to explain luminance variability of 18 participant assessments of 'preferred' and 'just disturbing' scenes under daylighting conditions. Per-pixel luminance data from each scene were used to calculate Daylighting Glare Probability (DGP), Daylight Glare Index (DGI), and other candidate metrics using these three luminance threshold analysis methods. Of the established methods, the most consistent and effective metrics to explain variability in subjective responses were found to be; mean luminance of the task (using method3; (adj)r(2) = 0.59), mean luminance of the entire scene (using method2; (adj)r(2) = 0.44), and DGP using 2000 cd/m(2) as a glare source identifier (using method1; (adj)r(2) = 0.41). Of the 150 candidate metrics tested, the most effective was the 'mean luminance of the glare sources', where the glare sources were identified as 7* the mean luminance of the task position ((adj)r(2) = 0.64). Furthermore, DGP consistently performed better than DGI, confirming previous findings. 'Preferred' scenes never had more than similar to 10 percent of the field of view (FOV) that exceeded 2000 cd/m(2). Standard deviation of the entire scene luminance also proved to be a good predictor of satisfaction with general visual appearance.

Keywords

Glare; Daylight Metrics; Luminance Based Lighting Controls; Discomfort Glare; Occupant Preference; High Dynamic Range

Glareshade: A Visual Comfort-Based Approach to Occupant-Centric Shading Systems

Hashemloo, Alireza; Inanici, Mehlika; Meek, Christopher. (2016). Glareshade: A Visual Comfort-Based Approach to Occupant-Centric Shading Systems. Journal Of Building Performance Simulation, 9(4), 351 – 365.

View Publication

Abstract

This paper presents a novel method for designing of an occupant-centric shading algorithm that utilizes visual comfort metric as the form-generating criteria. Based on the premise of previous studies that demonstrate glare as the most important factor for operating shading devices, GlareShade is introduced as a simulation-based shading methodology driven by occupant's visual comfort. GlareShade not only responds to changing outdoor conditions such as the movement of the sun and the variation of cloud cover, but it also accounts for building specific local conditions. GlareShade draws its strength and flexibility from an occupant-centric approach that is based on the visual field of view of each occupant as the occupant is performing common visual tasks in a given environment, and the developed shading system is linked to a distributed sensing network of multiple occupants. ShadeFan is demonstrated as a proof-of-concept dynamic shading system utilizing the GlareShade method.

Keywords

Control Strategies; Design Tool; Daylight; Patterns; Offices; Blinds; Model; Occupant-centric Shading System; Glare; Daylighting; Visual Comfort

Evaluating a New Suite of Luminance-Based Design Metrics for Predicting Human Visual Comfort in Offices with Daylight

Van Den Wymelenberg, Kevin; Inanici, Mehlika. (2016). Evaluating a New Suite of Luminance-Based Design Metrics for Predicting Human Visual Comfort in Offices with Daylight. Leukos, 12(3), 113 – 138.

View Publication

Abstract

A new suite of visual comfort metrics is proposed and evaluated for their ability to explain the variability in subjective human responses in a mock private office environment with daylight. Participants (n = 48) rated visual comfort and preference factors, including 1488 discreet appraisals, and these subjective results were correlated against more than 2000 unique luminance-based metrics that were captured using high dynamic range photography techniques. Importantly, luminance-based metrics were more capable than illuminance-based metrics for fitting the range of human subjective responses to data from visual preference questionnaire items. No metrics based upon the entire scene ranked in the top 20 squared correlation coefficients, nor did any based upon illuminance or irradiance data, nor did any of the studied glare indices, luminance ratios, or contrast ratios. The standard deviation of window luminance was the metric that best fit human subjective responses to visual preference on seven of 12 questionnaire items (with r(2) = 0.43). Luminance metrics calculated using the horizontal 40. band (a scene-independent mask) and the window area (a scene-dependent mask) represented the majority of the top 20 squared correlation coefficients for almost all subjective visual preference questionnaire items. The strongest multiple regression model was for the semantic differential rating (too dim-too bright) of the window wall (R-adj(2) = 0.49) and was built upon three variables; standard deviation of window luminance, the 50th percentile luminance value from the lower view window, and mean luminance of the 40. horizontal band.

Keywords

Discomfort Glare; Controls; Daylighting; Visual Perception

PhD in the Built Environment

The College of Built Environments consists of five departments that together provide one of the country’s few comprehensive built environment programs within one academic unit: Architecture, Construction Management, Landscape Architecture, Real Estate, and Urban Design and Planning. Together, this combination of departments enable faculty and students to engage almost the entire development process, from economic and environmental planning, real estate, regulatory processes, siting and design, through actual financing and construction, to facility management and adaptive reuse in subsequent stages. Thus, the college is inherently multi-disciplinary, not only in terms of the dimensions of reality that it treats, but also in regard to the specialized disciplines, methods, and practices that it employs: history, theory, cultural criticism, engineering, design, planning, urban design, energy sciences, acoustics, lighting, environmental psychology, ecology, real estate analysis, statistics, management, horticulture, soil science, law, public policy, and ethics. In addition, because of the College’s focus on comprehensive analysis and practice concerning the built environment and its interrelation with society, it is substantially engaged in interdisciplinary work with other units on campus and outside of the campus, including mechanical, civil, and electrical engineering; with public policy and the health sciences; with art and art history; with textual interpretation in the humanities; with many of the computing and digitization activities that range from digital arts to the information school and technical communications; with education and social studies and services; with sustainability and ecological programs, including urban ecology, geography, the College of Forest Resources (especially urban horticulture and urban forestry), and Ocean Science and Fisheries; with environmental and land use law.

The College’s interdisciplinary character is a good fit with the emerging trends in today’s complex world, where only a pluralistic and collaborative approach will generate the necessary learning and teaching, research, and service. If we are to provide, in the end, both disciplinary and professional means to promote environmental well-being, the diverse environmental specializations must be fully integrated. Thus, working outside traditional disciplinary and departmental categories, the College’s faculty will advance solutions to problems that demand interdisciplinary perspectives and expertise. Other UW units bring much to bear on the built environment and students are wholeheartedly encouraged to explore possible cross-campus connections both in obvious and seemingly unlikely places. The Technology and Project Design/Delivery specialization especially connects with Psychology, the Information School, Technical Communication, Computer Science and Engineering, and Industrial Engineering; the Sustainable Systems and Prototypes field with Civil Engineering, Electrical Engineering, Industrial Engineering, Mechanical Engineering, the Information School, Technical Communication, the College of Forest Resources (especially Eco-System Science and Conservation, Urban Horticulture and Urban Forestry), the Evans School of Public Affairs, Geography, Public Health, Ocean Science and Fisheries, and Social Work, Urban Ecology, and perhaps Advanced Materials and Manufacturing Processes and Nanotechnology; the area of History, Theory, and Representation with Textual Studies, Art History, Interdisciplinary Arts & Sciences at Tacoma, and Comparative History of Ideas.