Skip to content

First-Time Homebuyers: Toward a New Measure

Acolin, Arthur; Calem, Paul; Jagtiani, Julapa; Wachter, Susan. (2018). First-Time Homebuyers: Toward a New Measure. Cityscape, 20(1), 193 – 204.

View Publication

Abstract

Existing data sources show divergent estimates of the number of homes purchased by first-time homebuyers as a share of all home purchases. In this article, we use a new dataset to construct a time series of the share of first-time homebuyers. This series, based on the Federal Reserve Bank of New York Equifax Consumer Credit Panel, shows a significant decline in the share of first-time homebuyers, particularly among young households, consistent with the decline in homeownership in this age cohort since the early 2000s.

Comparing Small Area Fair Market Rents with Other Rental Measures across Diverse Housing Markets

Hess, Christian; Walter, Rebecca J.; Acolin, Arthur; Chasins, Sarah. (2019). Comparing Small Area Fair Market Rents with Other Rental Measures across Diverse Housing Markets. Cityscape, 21(3), 159 – 186.

View Publication

Abstract

Small Area Fair Market Rents (SAFMRs) are calculated at the 40th percentile of the U.S. postal ZIP Code instead of the metropolitan area in an effort to capture localized rents to expand choice for voucher holders to access housing in higher-opportunity neighborhoods. Existing studies on the potential and actual outcomes of SAFMRs demonstrate that findings vary for different types of housing markets. Furthermore, the decisions public housing authorities (PHAs) make in the implementation process affect PHAs' program budget and the rent burden and locational outcomes for voucher households. This study aims to address how these implementation factors are affected by local rental market conditions for three PHAs-Housing Authority of the City of Fort Lauderdale, San Antonio Housing Authority, and Seattle Housing Authority-in diverse housing markets. By comparing different sources of market rent estimates with SAFMRs in each location, we contribute new information about how this rule is likely to produce different residential outcomes in terms of increased access to low-poverty neighborhoods and adjustments to payment standards in low-rent neighborhoods. The findings reveal differences across rent measures in terms of estimated levels and relative differences across ZIP Codes. These findings suggest that housing authorities may face challenges in meeting the objectives of the SAFMR final rule without some form of local adjustments.]

Who Owns Chinatown: Neighbourhood Preservation and Change in Boston and Philadelphia

Acolin, Arthur; Vitiello, Domenic. (2018). Who Owns Chinatown: Neighbourhood Preservation and Change in Boston and Philadelphia. Urban Studies, 55(8), 1690 – 1710.

View Publication

Abstract

The survival of Chinatowns and other ethnic enclaves in cities is largely determined by who owns property. Ethnic enclaves such as Chinatowns have traditionally played important economic, social and cultural functions as places for recent immigrants to live and work, though Chinatowns have long faced redevelopment pressures. In North America, as Chinese immigrants and their descendants settle in the suburbs, and as historic Chinatowns’ locations close to revitalising downtowns attract increasing investment, the future of these historic enclaves is shaped by various, often intense and divergent, forces. This article describes changes in the patterns of property ownership in Boston and Philadelphia’s downtown Chinatowns over the last decade (2003–2013) and relates them to changes and continuities in these neighbourhoods’ population, commercial activities and building stock. The trends we observe simultaneously reinforce and complicate debates about gentrification and longstanding efforts to preserve these Chinatowns as ethnic Chinese residential, commercial, and cultural centres.]

Keywords

Chinatown, Ethnic Enclave, Neighbourhood Change, Ownership

Qing Shen awarded funding for commute research survey

The Mobility Innovation Center announced that Qing Shen, professor of Urban Design & Planning and an expert in transportation planning and policy, has received a $100,000 award to study commuting patterns and develop a model to understand the effect of telework and flexible scheduling. The project will build off the existing Commute Trip Reduction (CTR) survey for employers who are in the CTR program as required by state law in the central city portion of Seattle. In addition, a complementary…

Vince Wang

Ruoniu (Vince) Wang is an Assistant Professor in the Runstad Department of Real Estate in the College of Built Environments at the University of Washington. He studies spatial justice and inclusive communities, including their impacts reflected in the built environment, human behaviors, and policy interventions. Vince joined the University of Washington after serving six years as the research manager and director in a national non-profit organization Grounded Solutions Network. He has designed and conducted a U.S. Census of inclusionary housing policies, a U.S. census of community land trusts, and a national performance evaluation of shared equity homeownership programs. His research expands to policy evaluation for the two largest federal assisted housing rental programs in the U.S.: the Low-Income Housing Tax Credit program and the Housing Choice Voucher program. Vince grounds his research with applied tools to democratize data for low-income communities.

Lingzi Wu

Lingzi Wu is an Assistant Professor with the Department of Construction Management (CM) at the University of Washington (UW). Prior to joining UW in September 2022, Dr. Wu served as a postdoctoral fellow in the Department of Civil and Environmental Engineering at University of Alberta, where she received her MSc and PhD in Construction Engineering and Management in 2013 and 2020 respectively. Prior to her PhD, Dr. Wu worked in the industrial construction sector as a project coordinator with PCL Industrial Management from 2013 to 2017.

An interdisciplinary scholar focused on advancing digital transformation in construction, Dr. Wu’s current research interests include (1) integration of advanced data analytics and complex system modeling to enhance construction practices and (2) development of human-in-the-loop decision support systems to improve construction performance (e.g., sustainability and safety). Dr. Wu has published 10 papers in top journals and conference proceedings, including the Journal of Construction Engineering and Management, Journal of Computing in Civil Engineering, and Automation in Construction. Her research and academic excellence has received notable recognition, including a “Best Paper Award” at the 17th International Conference on Modeling and Applied Simulation, and the outstanding reviewer award from the Journal of Construction Engineering and Management.

As an educator and mentor, Dr. Wu aims to create an inclusive, innovative, and interactive learning environment where students develop personal, technical, and transferable skills to grow today, tomorrow, and into the future.

Celina Balderas Guzmán

Celina Balderas Guzmán, PhD, is Assistant Professor in the Department of Landscape Architecture. Dr. Balderas’ research spans environmental planning, design, and science and focuses on climate adaptation to sea level rise on the coast and urban stormwater inland. On the coast, her work demonstrates specific ways that the climate adaptation actions of humans and adaptation of ecosystems are interdependent. Her work explores how these interdependencies can be maladaptive by shifting vulnerabilities to other humans or non-humans, or synergistic. Using ecological modeling, she has explored these interdependencies focusing on coastal wetlands as nature-based solutions. Her work informs cross-sectoral adaptation planning at a regional scale.

Inland, Dr. Balderas studies urban stormwater through a social-ecological lens. Using data science and case studies, her work investigates the relationship between stormwater pollution and the social, urban form, and land cover characteristics of watersheds. In past research, she developed new typologies of stormwater wetlands based on lab testing in collaboration with environmental engineers. The designs closely integrated hydraulic performance, ecological potential, and recreational opportunities into one form.

Her research has been funded by major institutions such as the National Science Foundation, National Socio-Environmental Synthesis Center, UC Berkeley, and the MIT Abdul Latif Jameel Water and Food Systems Lab. She has a PhD in the Department of Landscape Architecture and Environmental Planning from the University of California, Berkeley. Previously, she obtained masters degrees in urban planning and urban design, as well as an undergraduate degree in architecture all from MIT.

Narjes Abbasabadi

Narjes Abbasabadi, Ph.D., is an Assistant Professor in the Department of Architecture at the University of Washington. Dr. Abbasabadi also leads the Sustainable Intelligence Lab. Abbasabadi’s research centers on sustainability and computation in the built environment. Much of her work focuses on advancing design research efforts through developing data-driven methods, workflows, and tools that leverage the advances in digital technologies to enable augmented intelligence in performance-based and human-centered design. With an emphasis on multi-scale exploration, her research investigates urban building energy flows, human systems, and environmental and health impacts across scales—from the scale of building to the scale of neighborhood and city.

Abbasabadi’s research has been published in premier journals, including Applied Energy, Building and Environment, Energy and Buildings, Environmental Research, and Sustainable Cities and Society. She received honors and awards, including “ARCC Dissertation Award Honorable Mention” (Architectural Research Centers Consortium (ARCC), 2020), “Best Ph.D. Program Dissertation Award” (IIT CoA, 2019), and 2nd place in the U.S. Department of Energy (DOE)’s Race to Zero Design Competition (DOE, 2018). In 2018, she organized the 3rd IIT International Symposium on Buildings, Cities, and Performance. She served as editor of the third issue of Prometheus Journal, which received the 2020 Haskell Award from AIA New York, Center for Architecture.

Prior to joining the University of Washington, she taught at the University of Texas at Arlington and the Illinois Institute of Technology. She also has practiced with several firms and institutions and led design research projects such as developing design codes and prototypes for low-carbon buildings. Most recently, she practiced as an architect with Adrian Smith + Gordon Gill Architecture (AS+GG), where she has been involved in major projects, including the 2020 World Expo. Abbasabadi holds a Ph.D. in Architecture from the Illinois Institute of Technology and Master’s and Bachelor’s degrees in Architecture from Tehran Azad University.

Dylan Stevenson

Dylan Stevenson’s (Prairie Band Potawatomi descent) research examines how culture informs planning strategies and influences land relationships. More specifically, he investigates how tribal epistemologies structure notions of Indigenous futurities by centering Indigenous cultural values at the forefront of environmental stewardship and cultural preservation. He is currently working on a project researching how governments (Federal, State, and Tribal) embed cultural values in Water Resources Planning strategies, drawing from ethnographic research he conducted in the joint territory of the United Keetoowah Band of Cherokee Indians and Cherokee Nation in Oklahoma. His other research interests include ecological restoration, intangible cultural heritage, and food systems planning. Previously, Dylan has worked for public and quasi-public entities dealing with the implementation and compliance of local, state, and federal legislation in California and has forthcoming work analyzing Diversity, Equity, and Inclusion (DEI) initiatives in planning programs.

Dylan earned his Ph.D. in the Department of City and Regional Planning at Cornell University. He earned his master’s degree in Planning with a concentration in Preservation and Design of the Built Environment from the University of Southern California, a bachelor’s degree in Linguistics with a minor in Native American Studies from the University of California—Davis, and an associate of arts degree in Liberal Arts from De Anza College.

The Effect of Luminance Distribution Patterns on Occupant Preference in a Daylit Office Environment

Van Den Wymelenberg, Kevin; Inanici, Mehlika; Johnson, Peter. (2010). The Effect of Luminance Distribution Patterns on Occupant Preference in a Daylit Office Environment. Leukos, 7(2), 103 – 122.

View Publication

Abstract

New research in daylighting metrics and developments in validated digital High Dynamic Range (HDR) photography techniques suggest that luminance based lighting controls have the potential to provide occupant satisfaction and energy saving improvements over traditional illuminance based lighting controls. This paper studies occupant preference and acceptance of patterns of luminance using HDR imaging and a repeated measures design methodology in a daylit office environment. Three existing luminance threshold analysis methods [method1: predetermined absolute luminance threshold (for example, 2000 cd/m(2)), method2: scene based mean luminance threshold, and method3: task based mean luminance threshold] were studied along with additional candidate metrics for their ability to explain luminance variability of 18 participant assessments of 'preferred' and 'just disturbing' scenes under daylighting conditions. Per-pixel luminance data from each scene were used to calculate Daylighting Glare Probability (DGP), Daylight Glare Index (DGI), and other candidate metrics using these three luminance threshold analysis methods. Of the established methods, the most consistent and effective metrics to explain variability in subjective responses were found to be; mean luminance of the task (using method3; (adj)r(2) = 0.59), mean luminance of the entire scene (using method2; (adj)r(2) = 0.44), and DGP using 2000 cd/m(2) as a glare source identifier (using method1; (adj)r(2) = 0.41). Of the 150 candidate metrics tested, the most effective was the 'mean luminance of the glare sources', where the glare sources were identified as 7* the mean luminance of the task position ((adj)r(2) = 0.64). Furthermore, DGP consistently performed better than DGI, confirming previous findings. 'Preferred' scenes never had more than similar to 10 percent of the field of view (FOV) that exceeded 2000 cd/m(2). Standard deviation of the entire scene luminance also proved to be a good predictor of satisfaction with general visual appearance.

Keywords

Glare; Daylight Metrics; Luminance Based Lighting Controls; Discomfort Glare; Occupant Preference; High Dynamic Range