Skip to content

Qing Shen awarded funding for commute research survey

The Mobility Innovation Center announced that Qing Shen, professor of Urban Design & Planning and an expert in transportation planning and policy, has received a $100,000 award to study commuting patterns and develop a model to understand the effect of telework and flexible scheduling. The project will build off the existing Commute Trip Reduction (CTR) survey for employers who are in the CTR program as required by state law in the central city portion of Seattle. In addition, a complementary…

Vince Wang

Ruoniu (Vince) Wang is an Assistant Professor in the Runstad Department of Real Estate in the College of Built Environments at the University of Washington. He studies spatial justice and inclusive communities, including their impacts reflected in the built environment, human behaviors, and policy interventions. Vince joined the University of Washington after serving six years as the research manager and director in a national non-profit organization Grounded Solutions Network. He has designed and conducted a U.S. Census of inclusionary housing policies, a U.S. census of community land trusts, and a national performance evaluation of shared equity homeownership programs. His research expands to policy evaluation for the two largest federal assisted housing rental programs in the U.S.: the Low-Income Housing Tax Credit program and the Housing Choice Voucher program. Vince grounds his research with applied tools to democratize data for low-income communities.

Lingzi Wu

Lingzi Wu is an Assistant Professor with the Department of Construction Management (CM) at the University of Washington (UW). Prior to joining UW in September 2022, Dr. Wu served as a postdoctoral fellow in the Department of Civil and Environmental Engineering at University of Alberta, where she received her MSc and PhD in Construction Engineering and Management in 2013 and 2020 respectively. Prior to her PhD, Dr. Wu worked in the industrial construction sector as a project coordinator with PCL Industrial Management from 2013 to 2017.

An interdisciplinary scholar focused on advancing digital transformation in construction, Dr. Wu’s current research interests include (1) integration of advanced data analytics and complex system modeling to enhance construction practices and (2) development of human-in-the-loop decision support systems to improve construction performance (e.g., sustainability and safety). Dr. Wu has published 10 papers in top journals and conference proceedings, including the Journal of Construction Engineering and Management, Journal of Computing in Civil Engineering, and Automation in Construction. Her research and academic excellence has received notable recognition, including a “Best Paper Award” at the 17th International Conference on Modeling and Applied Simulation, and the outstanding reviewer award from the Journal of Construction Engineering and Management.

As an educator and mentor, Dr. Wu aims to create an inclusive, innovative, and interactive learning environment where students develop personal, technical, and transferable skills to grow today, tomorrow, and into the future.

Celina Balderas Guzmán

Celina Balderas Guzmán, PhD, is Assistant Professor in the Department of Landscape Architecture. Dr. Balderas’ research spans environmental planning, design, and science and focuses on climate adaptation to sea level rise on the coast and urban stormwater inland. On the coast, her work demonstrates specific ways that the climate adaptation actions of humans and adaptation of ecosystems are interdependent. Her work explores how these interdependencies can be maladaptive by shifting vulnerabilities to other humans or non-humans, or synergistic. Using ecological modeling, she has explored these interdependencies focusing on coastal wetlands as nature-based solutions. Her work informs cross-sectoral adaptation planning at a regional scale.

Inland, Dr. Balderas studies urban stormwater through a social-ecological lens. Using data science and case studies, her work investigates the relationship between stormwater pollution and the social, urban form, and land cover characteristics of watersheds. In past research, she developed new typologies of stormwater wetlands based on lab testing in collaboration with environmental engineers. The designs closely integrated hydraulic performance, ecological potential, and recreational opportunities into one form.

Her research has been funded by major institutions such as the National Science Foundation, National Socio-Environmental Synthesis Center, UC Berkeley, and the MIT Abdul Latif Jameel Water and Food Systems Lab. She has a PhD in the Department of Landscape Architecture and Environmental Planning from the University of California, Berkeley. Previously, she obtained masters degrees in urban planning and urban design, as well as an undergraduate degree in architecture all from MIT.

Narjes Abbasabadi

Narjes Abbasabadi, Ph.D., is an Assistant Professor in the Department of Architecture at the University of Washington. Dr. Abbasabadi also leads the Sustainable Intelligence Lab. Abbasabadi’s research centers on sustainability and computation in the built environment. Much of her work focuses on advancing design research efforts through developing data-driven methods, workflows, and tools that leverage the advances in digital technologies to enable augmented intelligence in performance-based and human-centered design. With an emphasis on multi-scale exploration, her research investigates urban building energy flows, human systems, and environmental and health impacts across scales—from the scale of building to the scale of neighborhood and city.

Abbasabadi’s research has been published in premier journals, including Applied Energy, Building and Environment, Energy and Buildings, Environmental Research, and Sustainable Cities and Society. She received honors and awards, including “ARCC Dissertation Award Honorable Mention” (Architectural Research Centers Consortium (ARCC), 2020), “Best Ph.D. Program Dissertation Award” (IIT CoA, 2019), and 2nd place in the U.S. Department of Energy (DOE)’s Race to Zero Design Competition (DOE, 2018). In 2018, she organized the 3rd IIT International Symposium on Buildings, Cities, and Performance. She served as editor of the third issue of Prometheus Journal, which received the 2020 Haskell Award from AIA New York, Center for Architecture.

Prior to joining the University of Washington, she taught at the University of Texas at Arlington and the Illinois Institute of Technology. She also has practiced with several firms and institutions and led design research projects such as developing design codes and prototypes for low-carbon buildings. Most recently, she practiced as an architect with Adrian Smith + Gordon Gill Architecture (AS+GG), where she has been involved in major projects, including the 2020 World Expo. Abbasabadi holds a Ph.D. in Architecture from the Illinois Institute of Technology and Master’s and Bachelor’s degrees in Architecture from Tehran Azad University.

Dylan Stevenson

Dylan Stevenson’s (Prairie Band Potawatomi descent) research examines how culture informs planning strategies and influences land relationships. More specifically, he investigates how tribal epistemologies structure notions of Indigenous futurities by centering Indigenous cultural values at the forefront of environmental stewardship and cultural preservation. He is currently working on a project researching how governments (Federal, State, and Tribal) embed cultural values in Water Resources Planning strategies, drawing from ethnographic research he conducted in the joint territory of the United Keetoowah Band of Cherokee Indians and Cherokee Nation in Oklahoma. His other research interests include ecological restoration, intangible cultural heritage, and food systems planning. Previously, Dylan has worked for public and quasi-public entities dealing with the implementation and compliance of local, state, and federal legislation in California and has forthcoming work analyzing Diversity, Equity, and Inclusion (DEI) initiatives in planning programs.

Dylan earned his Ph.D. in the Department of City and Regional Planning at Cornell University. He earned his master’s degree in Planning with a concentration in Preservation and Design of the Built Environment from the University of Southern California, a bachelor’s degree in Linguistics with a minor in Native American Studies from the University of California—Davis, and an associate of arts degree in Liberal Arts from De Anza College.

Design Management in Design-Build Megaprojects: SR 99 Bored Tunnel Case Study

Gatti, U.C.; Migliaccio, G.C.; Laird, L. (2014). Design Management in Design-Build Megaprojects: SR 99 Bored Tunnel Case Study. Practice Periodical On Structural Design And Construction, 19(1), 148-58.

View Publication

Abstract

The increasing use of the design-build project delivery method has resulted in it now being one of the most popular nontraditional methods for delivering road, bridge, mass transit, and rail projects in the United States. However, although the use of design-build is widespread, there remains a substantial lack of information about how to effectively plan and implement design management procedures for design-build transportation projects. In particular, transportation agencies lack information about how to shape appropriate design management roles for various contractual parties and to manage design activities for design-build megaprojects. To fill this gap, this paper presents a case study of the SR 99 Bored Tunnel project in Seattle, Washington. It provides detailed information on how the owner, the Washington State DOT (WSDOT), incorporated design management procedures into its requirements and how the design-builder, Seattle Tunnel Partners, implemented them within its project management processes.

Keywords

Boring; Design Engineering; Project Management; Tunnels; Design-build Megaproject; Design-build Project Delivery Method; Road Project; Bridge Project; Mass Transit Project; Rail Project; United States; Design-build Transportation Project; Transportation Agency; Sr 99 Bored Tunnel Project; Seattle; Washington State Dot; Wsdot; Design Management; Project Management Process

Using the Built Environment to Oversample Walk, Transit, and Bicycle Travel

Stewart, Orion Theodore; Moudon, Anne Vernez. (2014). Using the Built Environment to Oversample Walk, Transit, and Bicycle Travel. Transportation Research: Part D, 32, 15 – 23.

View Publication

Abstract

Characteristics of the built environment (BE) have been associated with walk, transit, and bicycle travel. These BE characteristics can be used by transportation researchers to oversample households from areas where walk, transit, or bicycle travel is more likely, resulting in more observations of these uncommon travel behaviors. Little guidance, however, is available on the effectiveness of such built environment oversampling strategies. This article presents measures that can be used to assess the effectiveness of BE oversampling strategies and inform future efforts to oversample households with uncommon travel behaviors. The measures are sensitivity and specificity, positive likelihood ratio (LR+), and positive predictive value (PPV). To illustrate these measures, they were calculated for 10 BE-defined oversampling strata applied post-hoc to a Seattle area household travel survey. Strata with an average block size of <10 acres within a 1/4 mile of household residences held the single greatest potential for oversampling households that walk, use transit, and/or bicycle. (C) 2014 Elsevier Ltd. All rights reserved.

Keywords

Cycling; Transportation; Observation (scientific Method); Strategic Planning; Public Transit; Land Use; Bicycle; Household Travel Survey; Non-motorized Travel; Sampling; Screening Tests; Transit; Walk; Land-use; North-america; Renaissance; Policies; Choice; Trends

The Spatial Clustering of Obesity: Does the Built Environment Matter?

Huang, R.; Moudon, A. V.; Cook, A. J.; Drewnowski, A. (2015). The Spatial Clustering of Obesity: Does the Built Environment Matter? Journal Of Human Nutrition & Dietetics, 28(6), 604 – 612.

View Publication

Abstract

BackgroundObesity rates in the USA show distinct geographical patterns. The present study used spatial cluster detection methods and individual-level data to locate obesity clusters and to analyse them in relation to the neighbourhood built environment. MethodsThe 2008-2009 Seattle Obesity Study provided data on the self-reported height, weight, and sociodemographic characteristics of 1602 King County adults. Home addresses were geocoded. Clusters of high or low body mass index were identified using Anselin's Local Moran's I and a spatial scan statistic with regression models that searched for unmeasured neighbourhood-level factors from residuals, adjusting for measured individual-level covariates. Spatially continuous values of objectively measured features of the local neighbourhood built environment (SmartMaps) were constructed for seven variables obtained from tax rolls and commercial databases. ResultsBoth the Local Moran's I and a spatial scan statistic identified similar spatial concentrations of obesity. High and low obesity clusters were attenuated after adjusting for age, gender, race, education and income, and they disappeared once neighbourhood residential property values and residential density were included in the model. ConclusionsUsing individual-level data to detect obesity clusters with two cluster detection methods, the present study showed that the spatial concentration of obesity was wholly explained by neighbourhood composition and socioeconomic characteristics. These characteristics may serve to more precisely locate obesity prevention and intervention programmes.

Keywords

Real Property; Ecology; Age Distribution; Anthropometry; Black People; Cluster Analysis (statistics); Communities; Computer Software; Epidemiological Research; Geographic Information Systems; Hispanic Americans; Mathematics; Obesity; Population Geography; Probability Theory; Race; Regression Analysis; Research Funding; Restaurants; Statistical Sampling; Self-evaluation; Sex Distribution; Shopping; Surveys; Telephones; Transportation; White People; Socioeconomic Factors; Body Mass Index; Data Analysis Software; Medical Coding; Statistical Models; Descriptive Statistics; Odds Ratio; Economics; Washington (state); Built Environment; Local Moran's I; Spatial Scan Statistic; Body-mass Index; Physical-activity; United-states; Risk-factors; Neighborhood; Association; Density; Disease; Disparities; Prevalence