Echenagucia, Tomas Mendez; Moroseos, Teresa; Meek, Christopher. (2023). On the Tradeoffs between Embodied and Operational Carbon in Building Envelope Design: The Impact of Local Climates and Energy Grids. Energy & Buildings, 278.
View Publication
Abstract
The building envelope has a substantial influence on a building's life cycle operational and embodied car-bon emissions. Window-to-wall ratios, wall assemblies, shading and glazing types, have been shown to have a significant impact on total emissions. This paper provides building designers, owners, and policy makers with actionable guidance and a prioritization framework for establishing co-optimized lifecycle carbon performance of facade assembly components in a broad spectrum of climate contexts and energy carbon intensities. A large parametric study of building envelopes is conducted using building perfor-mance simulation and cradle-to-gate embodied carbon calculations in 6 US cities. The authors derive the total carbon emissions optimization for commercial office and residential space types using standard code-reference models and open-source lifecycle data. Comparisons between optimal total carbon solu-tions and (i) optimal operational carbon and (ii) minimum required assemblies, show the impact of under and over investing in envelope-related efficiency measures for each climate. Results show how the rela-tionship between embodied and operational carbon is highly localized, that optimal design variables can vary significantly. In low carbon intensity energy grids, over investment in envelope embodied carbon can exceed as 10 kgCO2e/m2, while under investment in high carbon intensity grids can be higher than 150 kgCO2e/m2.Published by Elsevier B.V.
Keywords
Facades; Building-integrated Photovoltaic Systems; Carbon Emissions; Carbon; Building Performance; Building Designers; Building Envelopes; Refuse Containers; Building Performance Simulation; Embodied Carbon; Operational Carbon; Parametric Modeling; Environmental-impact; Search
The Mobility Innovation Center announced that Qing Shen, professor of Urban Design & Planning and an expert in transportation planning and policy, has received a $100,000 award to study commuting patterns and develop a model to understand the effect of telework and flexible scheduling. The project will build off the existing Commute Trip Reduction (CTR) survey for employers who are in the CTR program as required by state law in the central city portion of Seattle. In addition, a complementary…
Celina Balderas Guzmán, PhD, is Assistant Professor in the Department of Landscape Architecture. Dr. Balderas’ research spans environmental planning, design, and science and focuses on climate adaptation to sea level rise on the coast and urban stormwater inland. On the coast, her work demonstrates specific ways that the climate adaptation actions of humans and adaptation of ecosystems are interdependent. Her work explores how these interdependencies can be maladaptive by shifting vulnerabilities to other humans or non-humans, or synergistic. Using ecological modeling, she has explored these interdependencies focusing on coastal wetlands as nature-based solutions. Her work informs cross-sectoral adaptation planning at a regional scale.
Inland, Dr. Balderas studies urban stormwater through a social-ecological lens. Using data science and case studies, her work investigates the relationship between stormwater pollution and the social, urban form, and land cover characteristics of watersheds. In past research, she developed new typologies of stormwater wetlands based on lab testing in collaboration with environmental engineers. The designs closely integrated hydraulic performance, ecological potential, and recreational opportunities into one form.
Her research has been funded by major institutions such as the National Science Foundation, National Socio-Environmental Synthesis Center, UC Berkeley, and the MIT Abdul Latif Jameel Water and Food Systems Lab. She has a PhD in the Department of Landscape Architecture and Environmental Planning from the University of California, Berkeley. Previously, she obtained masters degrees in urban planning and urban design, as well as an undergraduate degree in architecture all from MIT.
Narjes Abbasabadi, Ph.D., is an Assistant Professor in the Department of Architecture at the University of Washington. Dr. Abbasabadi also leads the Sustainable Intelligence Lab. Abbasabadi’s research centers on sustainability and computation in the built environment. Much of her work focuses on advancing design research efforts through developing data-driven methods, workflows, and tools that leverage the advances in digital technologies to enable augmented intelligence in performance-based and human-centered design. With an emphasis on multi-scale exploration, her research investigates urban building energy flows, human systems, and environmental and health impacts across scales—from the scale of building to the scale of neighborhood and city.
Abbasabadi’s research has been published in premier journals, including Applied Energy, Building and Environment, Energy and Buildings, Environmental Research, and Sustainable Cities and Society. She received honors and awards, including “ARCC Dissertation Award Honorable Mention” (Architectural Research Centers Consortium (ARCC), 2020), “Best Ph.D. Program Dissertation Award” (IIT CoA, 2019), and 2nd place in the U.S. Department of Energy (DOE)’s Race to Zero Design Competition (DOE, 2018). In 2018, she organized the 3rd IIT International Symposium on Buildings, Cities, and Performance. She served as editor of the third issue of Prometheus Journal, which received the 2020 Haskell Award from AIA New York, Center for Architecture.
Prior to joining the University of Washington, she taught at the University of Texas at Arlington and the Illinois Institute of Technology. She also has practiced with several firms and institutions and led design research projects such as developing design codes and prototypes for low-carbon buildings. Most recently, she practiced as an architect with Adrian Smith + Gordon Gill Architecture (AS+GG), where she has been involved in major projects, including the 2020 World Expo. Abbasabadi holds a Ph.D. in Architecture from the Illinois Institute of Technology and Master’s and Bachelor’s degrees in Architecture from Tehran Azad University.
Schell, Christopher J.; Dyson, Karen; Fuentes, Tracy L.; Des Roches, Simone; Harris, Nyeema C.; Miller, Danica Sterud; Woelfle-Erskine, Cleo A.; Lambert, Max R. (2020). The Ecological and Evolutionary Consequences of Systemic Racism in Urban Environments. Science, 369(6510), 1446.
View Publication
Abstract
Urban areas are dynamic ecological systems defined by interdependent biological, physical, and social components. The emergent structure and heterogeneity of urban landscapes drives biotic outcomes in these areas, and such spatial patterns are often attributed to the unequal stratification of wealth and power in human societies. Despite these patterns, few studies have effectively considered structural inequalities as drivers of ecological and evolutionary outcomes and have instead focused on indicator variables such as neighborhood wealth. In this analysis, we explicitly integrate ecology, evolution, and social processes to emphasize the relationships that bind social inequities-specifically racism-and biological change in urbanized landscapes. We draw on existing research to link racist practices, including residential segregation, to the heterogeneous patterns of flora and fauna observed by urban ecologists. In the future, urban ecology and evolution researchers must consider how systems of racial oppression affect the environmental factors that drive biological change in cities. Conceptual integration of the social and ecological sciences has amassed considerable scholarship in urban ecology over the past few decades, providing a solid foundation for incorporating environmental justice scholarship into urban ecological and evolutionary research. Such an undertaking is necessary to deconstruct urbanization's biophysical patterns and processes, inform equitable and anti-racist initiatives promoting justice in urban conservation, and strengthen community resilience to global environmental change.
Keywords
New-york; Climate-change; Land-cover; Socioeconomic-status; Ecosystem Services; Oxidative Stress; Green Spaces; Gene Flow; Justice; Cities
Bassok, Alon; Hurvitz, Phil M.; Bae, C-H. Christine; Larson, Timothy. (2010). Measuring Neighbourhood Air Pollution: The Case of Seattle’s International District. Journal Of Environmental Planning & Management, 53(1), 23 – 39.
View Publication
Abstract
Current US regulatory air quality monitoring networks measure ambient levels of pollutants and cannot capture the effects of mobile sources at the micro-scale. Despite the fact that overall air quality has been getting better, more vulnerable populations (children, the elderly, minorities and the poor) continue to suffer from traffic-related air pollution. As development intensifies in urban areas, more people are exposed to road-related air pollution. However, the only consideration given to air quality, if any, is based on ambient measures. This paper uses an inexpensive, portable Particle Soot Absorption Photometer (PSAP) to measure Black Carbon (BC) emissions, a surrogate for diesel fuels emissions, in Seattle's International District. With the aid of a GPS receiver, street-level BC data were geocoded in real space-time. It was found that pollution levels differed substantially across the study area. The results show the need for street-level air pollution monitoring, revisions in current land use and transportation policies, and air quality planning practice.
Keywords
Emission Standards; Air Pollution; Atmospheric Deposition; Social Groups; Waste Products; Sanitary Landfills; Black Carbon; Freeway Air Pollution Sheds (faps); Land Use; Mobile Monitoring; Neighbourhood Air Quality; Aerosol Light-absorption; Respiratory Health; Coefficient; Exposure; Symptoms; Children; Pollutants; Particles; Exhaust; Asthma
McPhearson, Timon; Pickett, Steward T. A.; Grimm, Nancy B.; Niemela, Jari; Alberti, Marina; Elmqvist, Thomas; Weber, Christiane; Haase, Dagmar; Breuste, Juergen; Qureshi, Salman. (2016). Advancing Urban Ecology toward a Science of Cities. Bioscience, 66(3), 198 – 212.
View Publication
Abstract
Urban ecology is a field encompassing multiple disciplines and practical applications and has grown rapidly. However, the field is heterogeneous as a global inquiry with multiple theoretical and conceptual frameworks, variable research approaches, and a lack of coordination among multiple schools of thought and research foci. Here, we present an international consensus on how urban ecology can advance along multiple research directions. There is potential for the field to mature as a holistic, integrated science of urban systems. Such an integrated science could better inform decisionmakers who need increased understanding of complex relationships among social, ecological, economic, and built infrastructure systems. To advance the field requires conceptual synthesis, knowledge and data sharing; cross-city comparative research, new intellectual networks, and engagement with additional disciplines. We consider challenges and opportunities for understanding dynamics of urban systems. We suggest pathways for advancing urban ecology research to support the goals of improving urban sustainability and resilience, conserving urban biodiversity, and promoting human well-being on an urbanizing planet.
Keywords
Urban Ecology (biology); Urban Biodiversity; Urbanization & The Environment; Life Sciences; Medical Sciences; Comparative Research; Complexity; Conceptual Frameworks; Urban Ecology; Urban Systems; Ecosystem Services; Green Spaces; Resilience; Framework; Systems; Design; Water; Tree
Wentz, Elizabeth A.; York, Abigail M.; Alberti, Marina; Conrow, Lindsey; Fischer, Heather; Inostroza, Luis; Jantz, Claire; Pickett, Steward T. A.; Seto, Karen C.; Taubenboeck, Hannes. (2018). Six Fundamental Aspects for Conceptualizing Multidimensional Urban Form: A Spatial Mapping Perspective. Landscape And Urban Planning, 179, 55 – 62.
View Publication
Abstract
Urbanization is currently one of the most profound transformations taking place across the globe influencing the flows of people, energy, and matter. The urban form influences and is influenced by these flows and is therefore critical in understanding and how urban areas affect and are affected by form. Nevertheless, there is a lack of uniformity in how urban form is analyzed. Urban form analyzed from a continuum of a simple urban versus non-urban classification to highly detailed representations of land use and land cover. Either end of the representation spectrum limits the ability to analyze within-urban dynamics, to make cross-city comparisons, and to produce generalizable results. In the framework of remote sensing and geospatial analysis, we identify and define six fundamental aspects of urban form, which are organized within three overarching components. Materials, or the physical elements of the urban landscape, consists of three aspects (1) human constructed elements, (2) the soil-plant continuum, and (3) water elements. The second component is configuration, which includes the (4) two- and three-dimensional space and (5) spatial pattern of urban areas. Lastly, because of the dynamics of human activities and biophysical processes, an important final component is the change of urban form over (6) time. We discuss how a this urban form framework integrates into a broader discussion of urbanization.
Keywords
Ecosystem Services; Land-use; Reconceptualizing Land; Cellular-automata; Heterogeneity; Framework; Model; Emissions; Dynamics; Cities; Gis; Remote Sensing; Land Use; Land Cover; Urban Form; Urban Materials; Energy; Humans; Land Use And Land Cover Maps; Landscapes; Urban Areas; Urbanization
Shang, Luming; Lee, Hyun Woo; Dermisi, Sofia; Choe, Youngjun. (2020). Impact of Energy Benchmarking and Disclosure Policy on Office Buildings. Journal Of Cleaner Production, 250.
View Publication
Abstract
Building energy benchmarking policies require owners to publicly disclose their building's energy performance. In the US, the adoption of such policies is contributing to an increased awareness among tenants and buyers and is expected to motivate the owners of less efficient buildings to invest in energy efficiency improvements. However, there is a lack of studies specifically aimed at investigating the impact of such policies on office buildings among major cities through quantitative analyses. In response, this study evaluated the effectiveness of the benchmarking policy on energy efficiency improvements decision-making and on real estate performances, by applying two interrupted time series analyses to office buildings in downtown Chicago. The initial results indicate a lack of statistically strong evidence that the policy affected the annual vacancy trend of the energy efficient buildings (represented by ENERGY STAR labeled buildings). However, the use of interrupted time series in a more in-depth analysis shows that the policy is associated with a 6.7% decrease in vacancy among energy efficient buildings. The study proposed a method to quantitatively evaluate the impact of energy policies on the real estate performance of office buildings, and the result confirms the positive impact of energy-efficient retrofits on the real estate performance. The study findings support the reasoning behind the owners' decision in implementing energy efficiency improvements in their office buildings to remain competitive in the market. (C) 2019 Elsevier Ltd. All rights reserved.
Keywords
Office Buildings; Building Failures; Time Series Analysis; Real Property; Energy Consumption; Metropolis; Building Performance; Chicago (ill.); Building Energy Benchmarking And Disclosure Policies; Building Energy Efficiency; Time Series Modeling; Energy Star (program); Building Management Systems; Buildings (structures); Decision Making; Energy Conservation; Maintenance Engineering; Time Series; Disclosure Policy; Energy Benchmarking Policies; Building; Benchmarking Policy; Energy Efficiency Improvements Decision-making; Estate Performance; Energy Efficient Buildings; Energy Star; Energy Policies; Energy-efficient Retrofits; Interrupted Time-series; Regression; Behavior; Designs; Building Energy Benchmarking And; Disclosure Policies; Buildings; Cities; Energy Efficiency; Energy Policy; Markets; Quantitative Analysis; United States
Cuo, Lan; Beyene, Tazebe K.; Voisin, Nathalie; Su, Fengge; Lettenmaier, Dennis P.; Alberti, Marina; Richey, Jeffrey E. (2011). Effects of Mid-Twenty-first Century Climate and Land Cover Change on the Hydrology Of the Puget Sound Basin, Washington. Hydrological Processes, 25(11), 1729 – 1753.
View Publication
Abstract
The distributed hydrology-soil-vegetation model (DHSVM) was used to study the potential impacts of projected future land cover and climate change on the hydrology of the Puget Sound basin, Washington, in the mid-twenty-first century. A 60-year climate model output, archived for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), was statistically downscaled and used as input to DHSVM. From the DHSVM output, we extracted multi-decadal averages of seasonal streamflow, annual maximum flow, snow water equivalent (SWE), and evapotranspiration centred around 2030 and 2050. Future land cover was represented by a 2027 projection, which was extended to 2050, and DHSVM was run (with current climate) for these future land cover projections. In general, the climate change signal alone on sub-basin streamflow was evidenced primarily through changes in the timing of winter and spring runoff, and slight increases in the annual runoff. Runoff changes in the uplands were attributable both to climate (increased winter precipitation, less snow) and land cover change (mostly reduced vegetation maturity). The most climatically sensitive parts of the uplands were in areas where the current winter precipitation is in the rain-snow transition zone. Changes in land cover were generally more important than climate change in the lowlands, where a substantial change to more urbanized land use and increased runoff was predicted. Both the annual total and seasonal distribution of freshwater flux to Puget Sound are more sensitive to climate change impacts than to land cover change, primarily because most of the runoff originates in the uplands. Both climate and land cover change slightly increase the annual freshwater flux to Puget Sound. Changes in the seasonal distribution of freshwater flux are mostly related to climate change, and consist of double-digit increases in winter flows and decreases in summer and fall flows. Copyright (C) 2010 John Wiley & Sons, Ltd.
Keywords
Joaquin River-basin; Water-resources; Change Impacts; Model; Sensitivity; Temperature; Prediction; Streamflow; Forecasts; Humidity; Hydrologic Prediction; Climate Change Impacts; Land Cover Change Impacts