Skip to content

Brad Benke

Brad Benke, AIA, is a Research Engineer at the Carbon Leadership Forum focused on developing data-driven resources to help practitioners and policymakers adopt and scale decarbonization strategies in the built environment. With a background in deep-green architecture and consulting, Brad works to synthesize and improve life cycle assessment practices and tools within the AEC industry and deliver practical solutions for low-carbon building design and construction. His recent work includes leading the CLF WBLCA Benchmark Study and developing the background data and methodologies for the CLF Embodied Carbon Policy Reduction Calculator. Brad is a former co-chair of AIA Seattle’s Committee on the Environment, and a former Senior Architect at McLennan Design, where he led diverse teams and stakeholders toward achieving decarbonization goals for buildings and organizations across the country.

Evaluation Strategies on the Thermal Environmental Effectiveness of Street Canyon Clusters: A Case Study of Harbin, China

Li, Guanghao; Cheng, Qingqing; Zhan, Changhong; Yocom, Ken P. (2022). Evaluation Strategies on the Thermal Environmental Effectiveness of Street Canyon Clusters: A Case Study of Harbin, China. Sustainability, 14(20).

View Publication

Abstract

Urban overheating significantly affects people's physical and mental health. The addition of street trees is an essential, economical, and effective means by which to mitigate urban heat and optimize the overall thermal environment. Focusing on typical street canyon clusters in Harbin, China, landscape morphology was quantified by streetscape interface measurements (sky view factor, tree view factor, and building view factor). Through ENVI-met simulations, the correlation mechanism between streetscape interface measurements and thermal environment was evaluated, and optimization methods for assessing the thermal environment of urban streets were proposed. The results revealed: (1) The thermal environment optimization efficiency of general street canyon types was greatest when street tree spacing was 12 m. At present, the smaller spacing has not been simulated and may yield better thermal environment results. The average decrease in temperature (Ta), relative humidity (RH) and mean radiant temperature (MRT) was 0.78%, 2.23%, and 30.20%, respectively. (2) Specific street canyon types should adopt precise control strategies of streetscape interface according to their types to achieve the optimal balance between thermal environment optimization and cost. (3) Streetscape interface measurements and thermal environment indexes show quadratic correlation characteristics, and are critical points for further investigation. The conclusions are more specific than previous research findings, which are of great significance for decreasing the urban heat island effect at the block scale, improving residents' physical and mental health, and improving the urban environment quality.

Keywords

Heat Mitigation Strategies; Urban Green Areas; Sky View Factor; Cold Region; Comfort; Tree; Landscape; Park; Simulation; Density; Street Canyon Clusters; Streetscape Interface Measurement; Envi-met Simulation; Thermal Optimization

On the Tradeoffs between Embodied and Operational Carbon in Building Envelope Design: The Impact of Local Climates and Energy Grids

Echenagucia, Tomas Mendez; Moroseos, Teresa; Meek, Christopher. (2023). On the Tradeoffs between Embodied and Operational Carbon in Building Envelope Design: The Impact of Local Climates and Energy Grids. Energy & Buildings, 278.

View Publication

Abstract

The building envelope has a substantial influence on a building's life cycle operational and embodied car-bon emissions. Window-to-wall ratios, wall assemblies, shading and glazing types, have been shown to have a significant impact on total emissions. This paper provides building designers, owners, and policy makers with actionable guidance and a prioritization framework for establishing co-optimized lifecycle carbon performance of facade assembly components in a broad spectrum of climate contexts and energy carbon intensities. A large parametric study of building envelopes is conducted using building perfor-mance simulation and cradle-to-gate embodied carbon calculations in 6 US cities. The authors derive the total carbon emissions optimization for commercial office and residential space types using standard code-reference models and open-source lifecycle data. Comparisons between optimal total carbon solu-tions and (i) optimal operational carbon and (ii) minimum required assemblies, show the impact of under and over investing in envelope-related efficiency measures for each climate. Results show how the rela-tionship between embodied and operational carbon is highly localized, that optimal design variables can vary significantly. In low carbon intensity energy grids, over investment in envelope embodied carbon can exceed as 10 kgCO2e/m2, while under investment in high carbon intensity grids can be higher than 150 kgCO2e/m2.Published by Elsevier B.V.

Keywords

Facades; Building-integrated Photovoltaic Systems; Carbon Emissions; Carbon; Building Performance; Building Designers; Building Envelopes; Refuse Containers; Building Performance Simulation; Embodied Carbon; Operational Carbon; Parametric Modeling; Environmental-impact; Search

Qing Shen awarded funding for commute research survey

The Mobility Innovation Center announced that Qing Shen, professor of Urban Design & Planning and an expert in transportation planning and policy, has received a $100,000 award to study commuting patterns and develop a model to understand the effect of telework and flexible scheduling. The project will build off the existing Commute Trip Reduction (CTR) survey for employers who are in the CTR program as required by state law in the central city portion of Seattle. In addition, a complementary…

Celina Balderas Guzmán

Celina Balderas Guzmán, PhD, is Assistant Professor in the Department of Landscape Architecture. Dr. Balderas’ research spans environmental planning, design, and science and focuses on climate adaptation to sea level rise on the coast and urban stormwater inland. On the coast, her work demonstrates specific ways that the climate adaptation actions of humans and adaptation of ecosystems are interdependent. Her work explores how these interdependencies can be maladaptive by shifting vulnerabilities to other humans or non-humans, or synergistic. Using ecological modeling, she has explored these interdependencies focusing on coastal wetlands as nature-based solutions. Her work informs cross-sectoral adaptation planning at a regional scale.

Inland, Dr. Balderas studies urban stormwater through a social-ecological lens. Using data science and case studies, her work investigates the relationship between stormwater pollution and the social, urban form, and land cover characteristics of watersheds. In past research, she developed new typologies of stormwater wetlands based on lab testing in collaboration with environmental engineers. The designs closely integrated hydraulic performance, ecological potential, and recreational opportunities into one form.

Her research has been funded by major institutions such as the National Science Foundation, National Socio-Environmental Synthesis Center, UC Berkeley, and the MIT Abdul Latif Jameel Water and Food Systems Lab. She has a PhD in the Department of Landscape Architecture and Environmental Planning from the University of California, Berkeley. Previously, she obtained masters degrees in urban planning and urban design, as well as an undergraduate degree in architecture all from MIT.

Narjes Abbasabadi

Narjes Abbasabadi, Ph.D., is an Assistant Professor in the Department of Architecture at the University of Washington. Dr. Abbasabadi also leads the Sustainable Intelligence Lab. Abbasabadi’s research centers on sustainability and computation in the built environment. Much of her work focuses on advancing design research efforts through developing data-driven methods, workflows, and tools that leverage the advances in digital technologies to enable augmented intelligence in performance-based and human-centered design. With an emphasis on multi-scale exploration, her research investigates urban building energy flows, human systems, and environmental and health impacts across scales—from the scale of building to the scale of neighborhood and city.

Abbasabadi’s research has been published in premier journals, including Applied Energy, Building and Environment, Energy and Buildings, Environmental Research, and Sustainable Cities and Society. She received honors and awards, including “ARCC Dissertation Award Honorable Mention” (Architectural Research Centers Consortium (ARCC), 2020), “Best Ph.D. Program Dissertation Award” (IIT CoA, 2019), and 2nd place in the U.S. Department of Energy (DOE)’s Race to Zero Design Competition (DOE, 2018). In 2018, she organized the 3rd IIT International Symposium on Buildings, Cities, and Performance. She served as editor of the third issue of Prometheus Journal, which received the 2020 Haskell Award from AIA New York, Center for Architecture.

Prior to joining the University of Washington, she taught at the University of Texas at Arlington and the Illinois Institute of Technology. She also has practiced with several firms and institutions and led design research projects such as developing design codes and prototypes for low-carbon buildings. Most recently, she practiced as an architect with Adrian Smith + Gordon Gill Architecture (AS+GG), where she has been involved in major projects, including the 2020 World Expo. Abbasabadi holds a Ph.D. in Architecture from the Illinois Institute of Technology and Master’s and Bachelor’s degrees in Architecture from Tehran Azad University.

Terrestrial Carbon Stocks across a Gradient of Urbanization: A Study of the Seattle, WA Region

Hutyra, Lucy R.; Yoon, Byungman; Alberti, Marina. (2011). Terrestrial Carbon Stocks across a Gradient of Urbanization: A Study of the Seattle, WA Region. Global Change Biology, 17(2), 783 – 797.

View Publication

Abstract

Most of our global population and its CO2 emissions can be attributed to urban areas. The process of urbanization changes terrestrial carbon stocks and fluxes, which, in turn, impact ecosystem functions and atmospheric CO2 concentrations. Using the Seattle, WA, region as a case study, this paper explores the relationships between aboveground carbon stocks and land cover within an urbanizing area. The major objectives were to estimate aboveground live and dead terrestrial carbon stocks across multiple land cover classes and quantify the relationships between urban cover and vegetation across a gradient of urbanization. We established 154 sample plots in the Seattle region to assess carbon stocks as a function of distance from the urban core and land cover [urban (heavy, medium, and low), mixed forest, and conifer forest land covers]. The mean (and 95% CI) aboveground live biomass for the region was 89 +/- 22 Mg C ha-1 with an additional 11.8 +/- 4 Mg C ha-1 of coarse woody debris biomass. The average live biomass stored within forested and urban land covers was 140 +/- 40 and 18 +/- 14 Mg C ha-1, respectively, with a 57% mean vegetated canopy cover regionally. Both the total carbon stocks and mean vegetated canopy cover were surprisingly high, even within the heavily urbanized areas, well exceeding observations within other urbanizing areas and the average US forested carbon stocks. As urban land covers and populations continue to rapidly increase across the globe, these results highlight the importance of considering vegetation in urbanizing areas within the terrestrial carbon cycle.

Keywords

Urbanization & The Environment; Carbon Cycle; Carbon In Soils; Climate Change Prevention; Population & The Environment; Land Cover; Cities & Towns -- Environmental Conditions; Seattle (wash.); Washington (state); Climate Change; Development; Mitigation; Pacific Northwest; Urban; United-states; Woody Debris; Storage; Growth; Responses; Fluxes; Co2; Sequestration; Landscape; Forests

Urban Driven Phenotypic Changes: Empirical Observations and Theoretical Implications for Eco-Evolutionary Feedback

Alberti, Marina; Marzluff, John; Hunt, Victoria M. (2017). Urban Driven Phenotypic Changes: Empirical Observations and Theoretical Implications for Eco-Evolutionary Feedback. Philosophical Transactions Of The Royal Society Of London. Series B, Biological Sciences, 372(1712).

View Publication

Abstract

Emerging evidence that cities drive micro-evolution raises the question of whether rapid urbanization of Earth might impact ecosystems by causing systemic changes in functional traits that regulate urban ecosystems' productivity and stability. Intraspecific trait variation-variation in organisms' morphological, physiological or behavioural characteristics stemming from genetic variability and phenotypic plasticity-has significant implications for ecological functions such as nutrient cycling and primary productivity. While it is well established that changes in ecological conditions can drive evolutionary change in species' traits that, in turn, can alter ecosystem function, an understanding of the reciprocal and simultaneous processes associated with such interactions is only beginning to emerge. In urban settings, the potential for rapid trait change may be exacerbated by multiple selection pressures operating simultaneously. This paper reviews evidence on mechanisms linking urban development patterns to rapid phenotypic changes, and differentiates phenotypic changes for which there is evidence of micro-evolution versus phenotypic changes which may represent plasticity. Studying how humans mediate phenotypic trait changes through urbanization could shed light on fundamental concepts in ecological and evolutionary theory. It can also contribute to our understanding of eco-evolutionary feedback and provide insights for maintaining ecosystem function over the long term. This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'.

Keywords

Peromyscus-leucopus Populations; Rapid Evolution; Urbanization; Biodiversity; Adaptation; Dynamics; Birds; Environment; Mechanisms; Morphology; Eco-evolution; Ecosystem Function; Urban Ecology; Ecosystems; Plastic Properties; Urban Environments; Evolution; Phenotypic Plasticity; Feedback; Urban Development; Biological Evolution; Plasticity; Environmental Impact; Nutrient Cycles; Environmental Changes; Productivity; Human Influences; Ecological Effects; Urban Areas; Genetic Variability; Physical Characteristics

Use and Effectiveness of Health Impact Assessment in the Energy and Natural Resources Sector in the United States, 2007 – 2016

Nkyekyer, Esi W.; Dannenberg, Andrew L. (2019). Use and Effectiveness of Health Impact Assessment in the Energy and Natural Resources Sector in the United States, 2007 – 2016. Impact Assessment & Project Appraisal, 37(1), 17 – 32.

View Publication

Abstract

Decisions made in the energy and natural resources sector can affect public health. This report reviews the characteristics and assesses the effectiveness of health impact assessments (HIAs) conducted in this sector. A total of 30 HIAs conducted in 14 states in the United States were identified using a targeted literature search. Five HIAs illustrative of the different source and sub-sector categories, and with identifiable impacts on decision-making processes were selected for review. An existing conceptual framework (Wismar) was used to assess the effectiveness of the five selected HIAs on decision-making related to non-renewable energy, renewable energy, mining, and energy conservation. The 30 HIAs were performed for a variety of projects and assessed health impacts ranging from metabolic disorders to community livability. Eight of the 30 reports were incorporated into environmental impact assessments. All five selected HIAs were generally effective and raised awareness of the health effects of the projects being assessed; four were directly effective and led to changes in final project decisions. Their variable effectiveness may be related to the extent of community engagement and consideration of equity issues, differences in the details and quality of monitoring and evaluation plans devised as part of the HIA process, and whether the outcomes of monitoring and evaluation are reported.

Keywords

Health Impact Assessment; Health Equity; Natural Resources; Environmental Impact Analysis; Power Resources; U.s. States; Energy Conservation; United States; Decision-making Effectiveness; Energy And Natural Resources; Wismar Framework; Horizon Oil-spill; Wind Turbine Noise; Quality-of-life; Environmental-health; Gas Development; Mental-health; Exposure; Vicinity; Hazards; Sleep; Environmental Assessment; Public Health; Metabolic Disorders; Renewable Energy; Monitoring; Decision Making; Evaluation; Environmental Impact; Community Involvement; Environmental Impact Assessment; Renewable Resources; Decisions; Impact Analysis; Mining; United States--us

The 2019 Conference on Health and Active Transportation: Research Needs and Opportunities

Berrigan, David; Dannenberg, Andrew L.; Lee, Michelle; Rodgers, Kelly; Wojcik, Janet R.; Wali, Behram; Tribby, Calvin P.; Buehler, Ralph; Sallis, James F.; Roberts, Jennifer D.; Steedly, Ann; Peng, Binbin; Eisenberg, Yochai; Rodriguez, Daniel A. (2021). The 2019 Conference on Health and Active Transportation: Research Needs and Opportunities. International Journal Of Environmental Research And Public Health, 18(22).

View Publication

Abstract

Active transportation (AT) is widely viewed as an important target for increasing participation in aerobic physical activity and improving health, while simultaneously addressing pollution and climate change through reductions in motor vehicular emissions. In recent years, progress in increasing AT has stalled in some countries and, furthermore, the coronavirus (COVID-19) pandemic has created new AT opportunities while also exposing the barriers and health inequities related to AT for some populations. This paper describes the results of the December 2019 Conference on Health and Active Transportation (CHAT) which brought together leaders from the transportation and health disciplines. Attendees charted a course for the future around three themes: Reflecting on Innovative Practices, Building Strategic Institutional Relationships, and Identifying Research Needs and Opportunities. This paper focuses on conclusions of the Research Needs and Opportunities theme. We present a conceptual model derived from the conference sessions that considers how economic and systems analysis, evaluation of emerging technologies and policies, efforts to address inclusivity, disparities and equity along with renewed attention to messaging and communication could contribute to overcoming barriers to development and use of AT infrastructure. Specific research gaps concerning these themes are presented. We further discuss the relevance of these themes considering the pandemic. Renewed efforts at research, dissemination and implementation are needed to achieve the potential health and environmental benefits of AT and to preserve positive changes associated with the pandemic while mitigating negative ones.

Keywords

Improving Arterial Roads; Physical-activity; Cost-effectiveness; Built Environment; Autonomous Vehicles; Walking; Behavior; Impact; Active Transportation; Covid-19; Climate Change; Physical Activity; Public Health; Pandemics; Public Transportation; Collaboration; Transportation; Economic Models; Environmental Impact; Outdoor Air Quality; Vehicle Emissions; Coronaviruses; Hispanic Americans; Fatalities; Systems Analysis; African Americans; Infrastructure; Medical Research; Committees; Land Use; Economic Analysis; New Technology; United States--us