Skip to content

A Case Study of the Failure of Digital Communication to Cross Knowledge Boundaries in Virtual Construction

Neff, Gina; Fiore-Silfvast, Brittany; Dossick, Carrie Sturts. (2010). A Case Study of the Failure of Digital Communication to Cross Knowledge Boundaries in Virtual Construction. Information Communication & Society, 13(4), 556 – 573.

View Publication

Abstract

When can digital artefacts serve to bridge knowledge barriers across epistemic communities? There have been many studies of the roles new information and communication technologies play within organizations. In our study, we compare digital and non-digital methods of inter-organizational collaboration. Based on ethnographic fieldwork on three construction projects and interviews with 65 architects, engineers, and builders across the USA, we find that IT tools designed to increase collaboration in this setting instead solidify and make explicit organizational and cultural differences between project participants. Our study suggests that deeply embedded disciplinary thinking is not easily overcome by digital representations of knowledge and that collaboration may be hindered through the exposure of previously implicit distinctions among the team members' skills and organizational status. The tool that we study, building information modelling, reflects and amplifies disciplinary representations of the building by architects, engineers, and builders instead of supporting increased collaboration among them. We argue that people sometimes have a difficult time overcoming the lack of interpretive flexibility in digital coordinating tools, even when those tools are built to encourage interdisciplinary collaboration.

Keywords

Digital Communications; Data Transmission Systems; Communication & Technology; Digital Electronics; System Analysis; Building Information Modelling; Collaboration; Qualitative Methods; Teams; Civil Engineering Computing; Digital Communication; Groupware; Knowledge Representation; Organisational Aspects; Virtual Reality; Case Study; Virtual Construction; Knowledge Barriers; Epistemic Community; Interorganizational Collaboration; Ethnographic Fieldwork; Interpretive Flexibility; Digital Coordinating Tool; Digital Collaboration; Technology; Objects; Design; Representations; Organizations

Automated Task-Level Activity Analysis through Fusion of Real Time Location Sensors and Worker’s Thoracic Posture Data

Cheng, Tao; Teizer, Jochen; Migliaccio, Giovanni C.; Gatti, Umberto C. (2013). Automated Task-Level Activity Analysis through Fusion of Real Time Location Sensors and Worker’s Thoracic Posture Data. Automation In Construction, 29, 24 – 39.

View Publication

Abstract

Knowledge of workforce productivity and activity is crucial for determining whether a construction project can be accomplished on time and within budget. Significant work has been done on improving and assessing productivity and activity at task, project, or industry levels. Task level productivity and activity analysis are used extensively within the construction industry for various purposes, including cost estimating, claim evaluation, and day-to-day project management. The assessment is mostly performed through visual observations and after-the-fact analyses even though previous studies show automatic translation of operations data into productivity information and provide spatial information of resources for specific construction operations. An original approach is presented that automatically assesses labor activity. Using data fusion of spatio-temporal and workers' thoracic posture data, a framework was developed for identifying and understanding the worker's activity type over time. This information is used to perform automatic work sampling that is expected to facilitate real-time productivity assessment. Published by Elsevier B.V.

Keywords

Detectors; Construction Projects; Labor Supply; Real-time Control; Construction Costs; Project Management; Machine Translating; Activity And Task Analysis; Construction Worker; Data Fusion; Health; Location Tracking; Productivity; Safety; Sensors; Thoracic Posture Data; Workforce; Construction Industry; Costing; Labour Resources; Sensor Fusion; Real-time Productivity Assessment; Automatic Work Sampling; Worker Activity Type; Spatio-temporal Data; Labor Activity Assessment; Construction Operations; Spatial Information; Productivity Information; Day-to-day Project Management; Claim Evaluation; Cost Estimating; Task Level Productivity; Industry Levels; Project Levels; Construction Project; Workforce Activity; Workforce Productivity; Worker Thoracic Posture Data; Real Time Location Sensors Fusion; Automated Task-level Activity Analysis; Construction-industry Productivity

An Exploratory Study of the Relationship between Construction Workforce Physical Strain and Task Level Productivity

Gatti, Umberto C.; Migliaccio, Giovanni C.; Bogus, Susan M.; Schneider, Suzanne(3). (2014). An Exploratory Study of the Relationship between Construction Workforce Physical Strain and Task Level Productivity. Construction Management And Economics, 32(6), 548 – 564.

View Publication

Abstract

The monitoring of construction workforce physical strain can be a valuable management strategy in improving workforce productivity, safety, health, and quality of work. Nevertheless, clear relationships between workforce performance and physical strain have yet to be established. An exploratory investigation of the relationship between task level productivity and physical strain was conducted. Nine participants individually performed a four-hour simulated construction task while a wearable physiological status monitor continuously assessed their physiological condition. Heart rate, relative heart rate, and breathing rate were utilized as predictors of physical strain, and task level-single factor productivity was used as an index of productivity. Numerous regression models were generated using the collected data. This investigation initially unsuccessfully attempted to establish a relationship between physiological condition and productivity at the individual worker level. However, an analysis of the regression models showed that there is a relationship between productivity and either heart rate or relative heart rate at the group level, and that this relationship is parabolic. Breathing rate was proved to not be a significant predictor of productivity. Research results significantly improve understanding of the relationship between work physiology and task productivity. Researchers and practitioners may use the tested monitoring devices, analysis methods, and results to design further applied studies and to improve workforce productivity. © 2013 © 2013 Taylor & Francis.

Keywords

Heart; Industrial Hygiene; Occupational Risks; Personnel; Regression Analysis; Construction Workforces; Management Strategies; Occupational Health And Safety; Operations Management; Physiological Condition; Physiological Status Monitors; Work Physiology; Workforce

Empirical Comparison of Methods for Estimating Location Cost Adjustments Factors

Migliaccio, G. C.; Zandbergen, Paul; Martinez, A. A. (2015). Empirical Comparison of Methods for Estimating Location Cost Adjustments Factors. Journal Of Management In Engineering, 31(2).

View Publication

Abstract

Location factors are used to adjust conceptual cost estimates by project location. Presently, the construction industry has adopted a simple, proximity-based interpolation method to estimate location factors for missing locations. Although this approach is widely accepted, its validity has not been statistically substantiated. This study assessed the current method of adjusting conceptual cost estimates by project location and compared its performance against two alternative spatial interpolation methods. A Moran's I test was used to confirm the presence of strong spatial autocorrelation, which supports the use of proximity-based methods. Additional statistical evaluations of current and alternative methods were also conducted. Results provided statistical justification for the current method. However, an alternative method was proven to outperform the current method. Moreover, several opportunities for future research were identified as a result of this exploratory study. (C) 2014 American Society of Civil Engineers.

Keywords

Construction Industry; Interpolation; Statistical Analysis; Location Cost Adjustment Factor; Proximity-based Interpolation Method; Project Location; Spatial Interpolation Method; Moran I Test; Spatial Autocorrelation; Statistical Evaluation; Geographical Information-systems; Construction; Layout; Gis; Conceptual Estimating; Geographic Information Systems; Construction Costs; Planning; Location Adjustments

Customer Earned Value: Performance Indicator from Flow and Value Generation View

Kim, Taehoon; Kim, Yong-woo; Cho, Hunhee. (2016). Customer Earned Value: Performance Indicator from Flow and Value Generation View. Journal Of Management In Engineering, 32(1).

View Publication

Abstract

The earned value method (EVM) is considered an advanced project control technique that provides a quantitative measure of work performance. However, the EVM is effective only under the assumption that every activity is independent. Literature shows that the EVM lacks the value generation view even working against the reliability of workflow. The goal of this research is to propose a project metric system to supplement the EVM in terms of the workflow and value generation. The researchers suggest a new metric of customer earned value (CEV), which is defined as the budgeted amount of work completed and is used by the successors on a network. Through a hypothetical case study, this research investigates how the work-in-process between trades and schedule performance in each trade behave under different uncertainties. The result suggests that the proposed metrics can provide project managers with more relevant managerial information on project progress as well as on the level of collaboration. The proposed system with the EVM would facilitate collaboration on project planning and control where variability and interdependency are involved. (C) 2015 American Society of Civil Engineers.

Keywords

Budgeting; Customer Services; Organisational Aspects; Planning; Project Management; Customer Earned Value; Project Planning; Project Managers; Trade-schedule Performance; Work-in-process; Budgeted Amount; Project Metric System; Advanced Project Control Technique; Earned Value Method; Performance Indicator; Value Generation View; Management; Project Control Metric; Collaboration

An Evaluation Of Wearable Sensors And Their Placements For Analyzing Construction Worker’s Trunk Posture In Laboratory Conditions.

Lee, Wonil; Seto, Edmund; Lin, Ken-yu; Migliaccio, Giovanni C. (2017). An Evaluation Of Wearable Sensors And Their Placements For Analyzing Construction Worker’s Trunk Posture In Laboratory Conditions. Applied Ergonomics, 65, 424 – 436.

View Publication

Abstract

This study investigates the effect of sensor placement on the analysis of trunk posture for construction activities using two off-the-shelf systems. Experiments were performed using a single-parameter monitoring wearable sensor (SPMWS), the ActiGraph GT9X Link, which was worn at six locations on the body, and a multi-parameter monitoring wearable sensor (MPMWS), the Zephyr BioHarnessTM3, which was worn at two body positions. One healthy male was recruited and conducted 10 experiment sessions to repeat measurements of trunk posture within our study. Measurements of upper-body thoracic bending posture during the lifting and lowering of raised deck materials in a laboratory setting were compared against video-captured observations of posture. The measurements from the two sensors were found to be in agreement during slow-motion symmetric bending activities with a target bending of <= 45. However, for asymmetric bending tasks, when the SPMWS was placed on the chest, its readings were substantially different from those of the MPMWS worn on the chest or under the armpit. (C) 2017 Elsevier Ltd. All rights reserved.

Keywords

Detectors; Construction Workers; Posture; Wearable Technology; Accelerometers; Work-related Injuries; Health; Accelerometer For Inclinometry; Construction Worker; Work-related Musculoskeletal Disorder; Motion Measurement; Position Measurement; Sensor Placement; Upper-body Thoracic Bending Posture Measurements; Trunk Posture Measurements; Zephyr Bioharness 3; Sensor Placement Effect; Construction Worker Trunk Posture Analysis; Wearable Sensor Evaluation; Asymmetric Bending Tasks; Slow-motion Symmetric Bending Activities; Mpmws; Multiparameter Monitoring Wearable Sensor; Actigraph Gt9x Link; Spmws; Single-parameter Monitoring Wearable Sensor; Low-back-pain; Physical-activity Assessment; Risk-factors; Musculoskeletal Disorders; Reliability; Movements; Validity; System; Gt3x+accelerometer

The Impact Of Coworkers’ Safety Violations On An Individual Worker: A Social Contagion Effect Within The Construction Crew

Liang, Huakang; Lin, Ken-yu; Zhang, Shoujian; Su, Yikun. (2018). The Impact Of Coworkers’ Safety Violations On An Individual Worker: A Social Contagion Effect Within The Construction Crew. International Journal Of Environmental Research And Public Health, 15(4).

View Publication

Abstract

This research developed and tested a model of the social contagion effect of coworkers' safety violations on individual workers within construction crews. Both situational and routine safety violations were considered in this model. Empirical data were collected from 345 construction workers in China using a detailed questionnaire. The results showed that both types of safety violations made by coworkers were significantly related to individuals' perceived social support and production pressure. Individuals' attitudinal ambivalence toward safety compliance mediated the relationships between perceived social support and production pressure and both types of individuals' safety violations. However, safety motivation only mediated the effects of perceived social support and production pressure on individuals' situational safety violations. Further, this research supported the differences between situational and routine safety violations. Specifically, we found that individuals were more likely to imitate coworkers' routine safety violations than their situational safety violations. Coworkers' situational safety violations had an indirect effect on individuals' situational safety violations mainly through perceived social support and safety motivation. By contrast, coworkers' routine safety violations had an indirect effect on individuals' routine safety violations mainly through perceived production pressure and attitudinal ambivalence. Finally, the theoretical and practical implications, research limitations, and future directions were discussed.

Keywords

Health-care Settings; Job Demands; Attitudinal Ambivalence; Industry Development; Workplace Safety; Behavior; Climate; Model; Risk; Employee; Social Contagion; Situational Safety Violations; Routine Safety Violations; Social Learning; Social Information Processing

Higher Residential and Employment Densities Are Associated with More Objectively Measured Walking in the Home Neighborhood

Huang, Ruizhu; Moudon, Anne, V; Zhou, Chuan; Saelens, Brian E. (2019). Higher Residential and Employment Densities Are Associated with More Objectively Measured Walking in the Home Neighborhood. Journal Of Transport & Health, 12, 142 – 151.

View Publication

Abstract

Introduction: Understanding where people walk and how the built environment influences walking is a priority in active living research. Most previous studies were limited by self-reported data on walking. In the present study, walking bouts were determined by integrating one week of accelerometry, GPS, and a travel log data among 675 adult participants in the baseline sample of the Travel Assessment and Community study at Seattle, Washington in the United State. Methods: Home neighborhood was defined as being within 0.5 mile of each participants' residence (a 10-min walk), with home neighborhood walking defined as walking bout lines with at least one GPS point within the home neighborhood. Home neighborhood walkability was constructed with seven built environment variables derived from spatially continuous objective values (SmartMaps). Collinearity among neighborhood environment variables was analyzed and variables that were strongly correlated with residential density were excluded in the regression analysis to avoid erroneous estimates. A Zero Inflated Negative Binomial (ZINB) served to estimate associations between home neighborhood environment characteristics and home neighborhood walking frequency. Results: The study found that more than half of participants' walking bouts occurred in their own home neighborhood. Higher residential density and job density were the two neighborhood walkability measures related to higher likelihood and more time walking in the home neighborhood, highest tertile residential density (22.4-62.6 unit/ha) (coefficient= 1.43; 95% CI 1.00-2.05) and highest tertile job density (12.4-272.3 jobs/acre) (coefficient= 1.62; 1.10-2.37). Conclusions: The large proportion of walking that takes place in the home neighborhood highlights the importance of continuing to examine the impact of the home neighborhood environment on walking. Potential interventions to increase walking behavior may benefit from increasing residential and employment density within residential areas.

Keywords

Body-mass Index; Built Environment; Physical-activity; Land Uses; Epidemiology; Selection; Location; Obesity; Travel Assessment And Community; Smartmaps; Neighborhood Environment; Physical Activity; Walking

Curriculum To Prepare AEC Students for BIM-Enabled Globally Distributed Projects

Anderson, Anne; Dossick, Carrie Sturts; Osburn, Laura. (2020). Curriculum To Prepare AEC Students for BIM-Enabled Globally Distributed Projects. International Journal Of Construction Education & Research, 16(4), 270 – 289.

View Publication

Abstract

Globalization and the increasing adoption of BIM and other technologies in the AEC industry have changed the way we prepare graduates for the digital workplace. This paper presents curriculum design where students from five universities worked together to develop design and construction proposals. This paper describes a collaborative project executed in two parts. Part I included the University of Washington in the USA and IIT-Madras in India. Part II included Washington State University in the USA, and National Taiwan University and National Cheng Kung University in Taiwan. Students from these global universities worked on a multi-disciplinary, interdependent project where teams created 3D models and 4D construction simulations. This curriculum addresses ACCE and ABET accreditation requirements regarding multi-disciplinary teams, ethical and professional responsibilities in global, economic, environmental, and societal contexts, and effective teamwork. In this paper, we describe the course design, evaluative criteria, and lessons learned. We found that it was important to emphasize BIM Execution Planning for distributed teams given that communication and coordination can be challenging across time zones and cultural differences. Working through technical challenges of exchanging BIM data, the students learned coordination skills in a globally distributed team environment that simulated real work experiences. [ABSTRACT FROM AUTHOR]; Copyright of International Journal of Construction Education & Research is the property of Routledge and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

Keywords

College Curriculum; Project Management; Digital Technology; Work Environment; Globalization; Bim; Building Information Modeling; Digital Literacy; Distributed Teams; Global Collaboration

Human-Centric Lighting Performance of Shading Panels in Architecture: A Benchmarking Study with Lab Scale Physical Models Under Real Skies

Parsaee, Mojtaba; Demers, Claude M. H.; Lalonde, Jean-francois; Potvin, Andre; Inanici, Mehlika; Hebert, Marc. (2020). Human-Centric Lighting Performance of Shading Panels in Architecture: A Benchmarking Study with Lab Scale Physical Models Under Real Skies. Solar Energy, 204, 354 – 368.

View Publication

Abstract

This study investigates shading panels' (SPs) impacts on daylighting features in a lab scale model in terms of parameters representing potential human eyes' biological responses identified as image forming (IF) and non-image forming (NIF). IF responses enable vision and NIF responses regulate internal body clocks known as circadian clocks. Human-centric lighting evaluates photopic units, representing IF responses, and melanopic units representing NIF responses, combined with correlated color temperature (CCT) of light for potential biological effects. SPs' impacts on such parameters of daylighting have not yet been studied. Previous research mostly studied panels' impacts on visual comfort and glare related to IF responses. This research explores the impact of SPs' color, reflectance, orientation, and openness on photopic and melanopic units and CCT of daylighting inside a 1:50 physical scale model of a space. Approximately 40 prototypes of SPs were evaluated. An experimental setup was designed under outdoor daylighting conditions to capture high dynamic range (HDR) images inside the model. HDR images were post processed to calculate and render the distribution of photopic and melanopic units, melanopic/photopic (M/P) ratios and CCTs in the captured viewpoint of the model. Results reveal the behavior of SPs' color, reflectance, orientation, and openness in modifying daylighting parameters related to biological responses. Bluish panels, in particular, increase daylighting melanopic units and CCTs whereas reddish panels increase photopic units and reduce CCTs. The research results were discussed to provide an outline for future developments of panels to adapt daylighting to occupants' IF and NIF responses.

Keywords

Models & Modelmaking; Shades & Shadows; Daylighting; Color Temperature; Benchmarking (management); Ecological Houses; Eye Tracking; Circadian Rhythms; Adaptive Design; Healthy Lighting; High Performance Façade; Photobiology; Responsive Building; Design; Sensitivity; Illuminance; Systems; Spaces; Impact; Glare; High Performance Facade; Reflectance; Scale Models; Biological Effects; Human Performance; Prototypes; Parameter Modification; Lighting; Shading; Eye (anatomy); Color; Parameter Identification; Light Effects; Panels; Mathematical Models; Images; Biological Clocks; Orientation