Skip to content

Comparative Assessment of Life Cycle Impacts of Curtain Wall Mullions

Azari-N, Rahman; Kim, Yong-woo. (2012). Comparative Assessment of Life Cycle Impacts of Curtain Wall Mullions. Building And Environment, 48(1), 135 – 145.

View Publication

Abstract

Glass curtain wall (Cw) systems have been inevitable elements of commercial buildings for over a century. The systems mainly consist of mullion materials and glazing units that are selected and designed to achieve the desired structural, thermal and daylighting performances as well as to meet cost and aesthetic concerns. The health and environmental life cycle impacts of CW systems, however, are not usually considered in design. The main objective of this paper is to study how change of mullion materials would affect the health and environmental impacts associated with a typical CW system over its life cycle. The mullion materials studied for the purpose of this paper include extruded aluminum, carbon steel and glulam timber. Also, the health and environmental impact categories of interest include global warming, acidification, eutrophication and human toxicity. To achieve the objective, a process-based cradle-to-gate attributional Life Cycle Assessment (LCA) method was applied. Results indicate that CW system with glulam timber mullions causes the least and CW system with extruded aluminum mullions causes the most damage to the environment and human health over their life cycle. A CW system with carbon steel mullions falls in-between. (C) 2011 Elsevier Ltd. All rights reserved.

Keywords

Commercial Building; Comparative Assessment; Curtain Walls; Environmental Life Cycle; Glass Curtain Walls; Inventory Analysis; Life Cycle Assessment (lca); Life Cycle Impacts; Aluminum Coated Steel; Ecodesign; Eutrophication; Global Warming; Health; Life Cycle; Office Buildings; Timber; Walls (structural Partitions); Energy; Wood; Products; Life Cycle Assessment; Environmental Impact; Curtain Wall; Mullion Material; Acidification; Aluminum; Attributional Life Cycle Assessment; Buildings; Carbon; Environmental Health; Glass; Glulam; Human Health; Humans; Materials Life Cycle; Steel; Toxicity

Guideline for Building Information Modeling in Construction Engineering and Management Education

Lee, Namhun; Dossick, Carrie S.; Foley, Sean P. (2013). Guideline for Building Information Modeling in Construction Engineering and Management Education. Journal Of Professional Issues In Engineering Education And Practice, 139(4), 266 – 274.

View Publication

Keywords

Buildings (structures); Computer Aided Instruction; Construction Industry; Educational Courses; Management Education; Structural Engineering Computing; Building Information Modeling; Construction Engineering And Management Education; Cem Education; Bim; Cem Curriculum

A User-centered Information And Communication Technology (ict) Tool To Improve Safety Inspections.

Lin, Ken-yu; Tsai, Meng-han; Gatti, Umberto C.; Lin, Jacob Je-chian; Lee, Cheng-hao; Kang, Shih-chung. (2014). A User-centered Information And Communication Technology (ict) Tool To Improve Safety Inspections. Automation In Construction, 48, 53 – 63.

View Publication

Abstract

Occupational safety is imperative in construction, and safety inspection is among the most common practices that help enforce job safety on site. The safety inspection process, however, suffers from several drawbacks that hinder the efficiency, effectiveness, and analytical learning capacity of the process. Dedicated tools for user-centered information and communications technology could significantly reduce such drawbacks. This paper discusses the use of an original two-step user-centered design approach to develop and evaluate an iPad application that aims to address such drawbacks and improve the day-to-day practices and management of safety inspections. Evaluation results indicate the usefulness and practicality of the application and identify innovative uses not previously envisioned. Furthermore, the developed tool allows consistent data collection that can eventually be used to aid the development of advanced safety and health data analysis techniques. (C) 2014 Elsevier B.V. All rights reserved.

Keywords

Information & Communication Technologies; Industrial Safety; Data Analysis; Technological Innovations; Ipads; Construction Safety; Field Data Collection; Field Inspection; Information And Communication Technology; Research To Practice; Safety Audit; Safety Inspection; Safety Technology; Site Inspection; User-centered Design; User-centered Information And Communication Technology Tool; Safety Inspection Process; Occupational Safety; Job Safety; Analytical Learning Capacity; Communications Technology; Two-step User-centered Design Approach; Ipad Application; Innovative Uses; Consistent Data Collection; Construction; Advanced Safety-health Data Analysis Techniques; Construction Industry; Information Technology; Inspection; Occupational Health; User Centred Design; Construction Site Safety; Management-system; Design; Productivity

Integration Evaluation Framework for Integrated Design Teams of Green Buildings: Development and Validation

Azari, Rahman; Kim, Yong-Woo. (2016). Integration Evaluation Framework for Integrated Design Teams of Green Buildings: Development and Validation. Journal Of Management In Engineering, 32(3).

View Publication

Abstract

Integrated design (ID) process encourages integration of team members in the design phase of green building projects through intense collaborative processes and free exchange of information. Although integration in general and ID in particular have been well theorized by construction management research community, there exists no systematic mechanism in the field to help owners, architects, and managers of green project teams assess the level of integration in their projects' ID team environment in a practical manner. The key objective of the present article is therefore to use a qualitative-quantitative methodology to propose and validate an integration evaluation framework for green project teams and to statistically test the association between integration level and project success. The framework can be used by green project teams for comparison, benchmarking, or educational purposes and for integration evaluation and improvement in ID team environments. This research also provides empirical evidence to anecdotes suggesting positive link between team integration and project success in green projects.

Keywords

Architecture; Benchmark Testing; Buildings (structures); Construction Industry; Education; Information Management; Process Design; Project Management; Statistical Testing; Team Working; Integration Evaluation Framework; Integrated Design Process; Team Members; Green Building Project; Construction Management Research Community; Architect; Id Team Environment; Benchmarking; Educational Purpose; Information Exchange; Construction; Delivery; Evaluation; Integration; Integrated Design; Green Buildings; Validation; Context; Input; Process; And Product (cipp)

The Relation of Perceived Benefits and Organizational Supports to User Satisfaction with Building Information Model (BIM)

Wang, Guangbin; Song, Jiule. (2017). The Relation of Perceived Benefits and Organizational Supports to User Satisfaction with Building Information Model (BIM). Computers In Human Behavior, 68, 493 – 500.

View Publication

Abstract

In recent years, building information model (BIM) is becoming increasing popularity in architecture, engineering and construction (AEC) industry, many researchers and practitioners have verified the benefits of BIM as compared to traditional information technology, for example Autodesk CAD. As one of the key drivers of BIM adopt, BIM users are significantly impact on the success level of BIM implementation. As a factor leading to information system success and indicating the continuance intention after their initial adoption, BIM user satisfaction is studied in this work. Based on the data collected from 118 BIM engineers, this study examined the influence of five potential variables (such as attitude, perceived ease of use, perceived usefulness, top management support and management by objective) on BIM user satisfaction in AEC industry. The result from PLS (partial least square) showed that the perceived usefulness, top management support and management by objective are significantly associated with BIM user satisfaction, and the influence of management by objective on BIM user satisfaction is much stronger than top management support and perceived usefulness. Besides, perceived ease of use and attitude have a significant influence on perceived usefulness. Moreover, top management support is found to be positive associated with management by objective. Finally, the discussion of these results was presented. (C) 2016 Elsevier Ltd. All rights reserved.

Keywords

Personal-computer Utilization; Technology; Acceptance; Management; Success; Systems; Pls; Attributes; Objectives; Variables; Bim User Satisfaction; Perceived Ease Of Use; Perceived Usefulness; Top Management Support; Management By Objective

Introducing Supergrids, Superblocks, Areas, Networks, and Levels to Urban Morphological Analyses

Moudon, Anne Vernez. (2019). Introducing Supergrids, Superblocks, Areas, Networks, and Levels to Urban Morphological Analyses. Iconarp International Journal Of Architecture And Planning, 7, 1 – 14.

View Publication

Abstract

Urban morphological analyses have identified the parcel (plot), the building type, or the plan unit (tessuto in Italian) as the basic elements of urban form. As cities have grown in geographic size disproportionately to their growth in population over the past seven decades, new elements have been introduced that structure their form. This essay describes these new elements and proposes that they be formally recognized in urban morphology. It introduces a conceptual framework for a multilevel structure of urban space using areas and networks and including supergrids and superblocks to guide morphological analyses.

Keywords

Morphological Elements; A Posteriori Approach; A Priori Approach

Comparative Environmental Analysis of Seismic Damage in Buildings

Huang, M.; Simonen, K. (2020). Comparative Environmental Analysis of Seismic Damage in Buildings. Journal Of Structural Engineering, 146(2).

View Publication

Abstract

In studying the environmental impacts of buildings, earthquake hazards are rarely considered, but their environmental impacts can be significant. This case study paper demonstrates how the US Federal Emergency Management Agency's Performance Assessment Calculation Tool (PACT) can be used to analyze the environmental impacts of buildings using probabilistic seismic hazard assessment. PACT was used to evaluate 10 case study buildings that varied by five types of lateral systems and two risk categories. For each building, PACT generated 1,000 realizations at five earthquake intensities. The resulting environmental impacts were analyzed according to their distribution, median, and average values, and the differences among building component types, risk categories, and lateral force-resisting systems were explored. In this study, building components that were categorized under Exterior Enclosures, Interior Finishes, and Heating, Ventilation, and Air-Conditioning (HVAC) produced notably higher environmental impacts in response to seismic damage, and their vulnerability to displacement- or acceleration-induced damage could be attributed to the characteristics of the lateral systems. Although these observations are notable, they should not be taken as universally applicable to all buildings. Instead, these findings exemplify how the environmental impact results from PACT can be analyzed and interpreted to address both the seismic and environmental aspects of building design. (C) 2019 American Society of Civil Engineers.

Keywords

Impact

Disruptive Information Exchange Requirements in Construction Projects: Perception and Response Patterns

Abdirad, Hamid; Dossick, Carrie S.; Johnson, Brian R.; Migliaccio, Giovanni. (2021). Disruptive Information Exchange Requirements in Construction Projects: Perception and Response Patterns. Building Research And Information, 49(2), 161 – 178.

View Publication

Abstract

The current proliferation of custom information exchange initiatives in projects disrupts information exchange routines of design and construction firms. This paper investigates how firms perceive, interpret, and act upon information exchange requirements that do not align with their existing routines. This case study examines a construction project for which the owner specified highly custom requirements for digital production and delivery of project submittals. Using ethnographic methods, the project parties' existing routines and their patterns of perceiving and responding to the requirements were identified. These patterns showed that the parties perceived disruptions to the existing dispositions and rules that guided their routines and shaped their performance across projects. The project parties used a combination of deductive, inductive, and abductive reasoning mechanisms to interpret the requirements, expose the inefficiencies associated with their workflows, and set new ground rules for action. The grounded propositions in this study hold that the limited opportunities for inductive reasoning and reflective assessment of workflows in projects can press project parties into identifying alternative workflows through cognitive search and abductive reasoning. This, in turn, results in highly situated, temporary, and fragmented workflows that are not durable and effective to contribute to refinement of existing information exchange routines.

Keywords

Construction Industry; Abductive Reasoning; Cognitive Searches; Construction Projects; Design And Construction; Ethnographic Methods; Inductive Reasoning; Information Exchange Requirements; Information Exchanges; Organizational Routines; Risk; Bim; Implementation; Innovation; Information Exchange; Disruptive Requirements; Routines; Construction Companies; Cognitive Ability; Project Engineering; Reasoning